对于政治和社会科学以及语言学和自然语言处理(NLP),它们都很有趣。退出研究涵盖了各个议会内的讨论。相比之下,我们将高级NLP方法应用于2017年至2020年之间的六个国家议会(保加利亚,捷克语,法语,斯洛文尼亚,西班牙语和英国)的联合和比较分析,其笔录是Parlamint数据集收集的一部分。使用统一的方法,我们分析了讨论,情感和情感的主题。我们评估说话者的年龄,性别和政治取向是否可以从演讲中检测到。结果表明,分析国家之间的一些共同点和许多令人惊讶的差异。
translated by 谷歌翻译
本文介绍了对土耳其语可用于的语料库和词汇资源的全面调查。我们审查了广泛的资源,重点关注公开可用的资源。除了提供有关可用语言资源的信息外,我们还提供了一组建议,并确定可用于在土耳其语言学和自然语言处理中进行研究和建筑应用的数据中的差距。
translated by 谷歌翻译
本次调查绘制了用于分析社交媒体数据的生成方法的研究状态的广泛的全景照片(Sota)。它填补了空白,因为现有的调查文章在其范围内或被约会。我们包括两个重要方面,目前正在挖掘和建模社交媒体的重要性:动态和网络。社会动态对于了解影响影响或疾病的传播,友谊的形成,友谊的形成等,另一方面,可以捕获各种复杂关系,提供额外的洞察力和识别否则将不会被注意的重要模式。
translated by 谷歌翻译
语言可以用作再现和执行有害刻板印象和偏差的手段,并被分析在许多研究中。在本文中,我们对自然语言处理中的性别偏见进行了304篇论文。我们分析了社会科学中性别及其类别的定义,并将其连接到NLP研究中性别偏见的正式定义。我们调查了在对性别偏见的研究中应用的Lexica和数据集,然后比较和对比方法来检测和减轻性别偏见。我们发现对性别偏见的研究遭受了四个核心限制。 1)大多数研究将性别视为忽视其流动性和连续性的二元变量。 2)大部分工作都在单机设置中进行英语或其他高资源语言进行。 3)尽管在NLP方法中对性别偏见进行了无数的论文,但我们发现大多数新开发的算法都没有测试他们的偏见模型,并无视他们的工作的伦理考虑。 4)最后,在这一研究线上发展的方法基本缺陷涵盖性别偏差的非常有限的定义,缺乏评估基线和管道。我们建议建议克服这些限制作为未来研究的指导。
translated by 谷歌翻译
情绪分析中最突出的任务是为文本分配情绪,并了解情绪如何在语言中表现出来。自然语言处理的一个重要观察结果是,即使没有明确提及情感名称,也可以通过单独参考事件来隐式传达情绪。在心理学中,被称为评估理论的情感理论类别旨在解释事件与情感之间的联系。评估可以被形式化为变量,通过他们认为相关的事件的人们的认知评估来衡量认知评估。其中包括评估事件是否是新颖的,如果该人认为自己负责,是否与自己的目标以及许多其他人保持一致。这样的评估解释了哪些情绪是基于事件开发的,例如,新颖的情况会引起惊喜或不确定后果的人可能引起恐惧。我们在文本中分析了评估理论对情绪分析的适用性,目的是理解注释者是否可以可靠地重建评估概念,如果可以通过文本分类器预测,以及评估概念是否有助于识别情感类别。为了实现这一目标,我们通过要求人们发短信描述触发特定情绪并披露其评估的事件来编译语料库。然后,我们要求读者重建文本中的情感和评估。这种设置使我们能够衡量是否可以纯粹从文本中恢复情绪和评估,并为判断模型的绩效指标提供人体基准。我们将文本分类方法与人类注释者的比较表明,两者都可以可靠地检测出具有相似性能的情绪和评估。我们进一步表明,评估概念改善了文本中情绪的分类。
translated by 谷歌翻译
对仇恨言论和冒犯性语言(HOF)的认可通常是作为一项分类任务,以决定文本是否包含HOF。我们研究HOF检测是否可以通过考虑HOF和类似概念之间的关系来获利:(a)HOF与情感分析有关,因为仇恨言论通常是负面陈述并表达了负面意见; (b)这与情绪分析有关,因为表达的仇恨指向作者经历(或假装体验)愤怒的同时经历(或旨在体验)恐惧。 (c)最后,HOF的一个构成要素是提及目标人或群体。在此基础上,我们假设HOF检测在与这些概念共同建模时,在多任务学习设置中进行了改进。我们将实验基于这些概念的现有数据集(情感,情感,HOF的目标),并在Hasoc Fire 2021英语子任务1A中评估我们的模型作为参与者(作为IMS-Sinai团队)。基于模型选择实验,我们考虑了多个可用的资源和共享任务的提交,我们发现人群情绪语料库,Semeval 2016年情感语料库和犯罪2019年目标检测数据的组合导致F1 =。 79在基于BERT的多任务多任务学习模型中,与Plain Bert的.7895相比。在HASOC 2019测试数据上,该结果更为巨大,而F1中的增加2pp和召回大幅增加。在两个数据集(2019,2021)中,HOF类的召回量尤其增加(2019年数据的6pp和2021数据的3pp),表明MTL具有情感,情感和目标识别是适合的方法可能部署在社交媒体平台中的预警系统。
translated by 谷歌翻译
社交媒体在现代社会中尤其是在西方世界中的政策制定方面已经变得极其影响力(例如,48%的欧洲人每天或几乎每天都使用社交媒体)。 Twitter之类的平台使用户可以关注政客,从而使公民更多地参与政治讨论。同样,政客们使用Twitter来表达他们的观点,在当前主题上进行辩论,并促进其政治议程,以影响选民行为。先前的研究表明,传达负面情绪的推文可能会更频繁地转发。在本文中,我们试图分析来自不同国家的政客的推文,并探索他们的推文是否遵循相同的趋势。利用最先进的预训练的语言模型,我们对从希腊,西班牙和英国的成千上万的推文进行了情感分析,包括权威的行政部门。我们通过系统地探索和分析有影响力和不流行的推文之间的差异来实现这一目标。我们的分析表明,政治家的负面推文更广泛地传播,尤其是在最近的时代,并突出了情感和受欢迎程度相交的有趣趋势。
translated by 谷歌翻译
情感是引人入胜的叙事的关键部分:文学向我们讲述了有目标,欲望,激情和意图的人。情绪分析是情感分析更广泛,更大的领域的一部分,并且在文学研究中受到越来越多的关注。过去,文学的情感维度主要在文学诠释学的背景下进行了研究。但是,随着被称为数字人文科学(DH)的研究领域的出现,在文学背景下对情绪的一些研究已经发生了计算转折。鉴于DH仍被形成为一个领域的事实,这一研究方向可以相对较新。在这项调查中,我们概述了现有的情感分析研究机构,以适用于文献。所评论的研究涉及各种主题,包括跟踪情节发展的巨大变化,对文学文本的网络分析以及了解文本的情感以及其他主题。
translated by 谷歌翻译
社交媒体平台上的滥用内容的增长增加对在线用户的负面影响。对女同性恋,同性恋者,跨性别或双性恋者的恐惧,不喜欢,不适或不疑虑被定义为同性恋/转铁症。同性恋/翻译语音是一种令人反感的语言,可以总结为针对LGBT +人的仇恨语音,近年来越来越受到兴趣。在线同性恋恐惧症/ Transphobobia是一个严重的社会问题,可以使网上平台与LGBT +人有毒和不受欢迎,同时还试图消除平等,多样性和包容性。我们为在线同性恋和转鸟以及专家标记的数据集提供了新的分类分类,这将允许自动识别出具有同种异体/传递内容的数据集。我们受过教育的注释器并以综合的注释规则向他们提供,因为这是一个敏感的问题,我们以前发现未受训练的众包注释者因文化和其他偏见而诊断倡导性的群体。数据集包含15,141个注释的多语言评论。本文介绍了构建数据集,数据的定性分析和注册间协议的过程。此外,我们为数据集创建基线模型。据我们所知,我们的数据集是第一个已创建的数据集。警告:本文含有明确的同性恋,转基因症,刻板印象的明确陈述,这可能对某些读者令人痛苦。
translated by 谷歌翻译
尽管试图提高政治性别平等,但全球努力仍在努力确保女性的同等代表。这很可能与对权威妇女的性别偏见有关。在这项工作中,我们介绍了在线政治讨论中出现的性别偏见的全面研究。为此,我们在有关男性和女性政客的对话中收集了1000万条有关Reddit的评论,这使得对自动性别偏见检测进行了详尽的研究。我们不仅讨论了厌恶女性的语言,还解决了其他偏见的表现,例如以看似积极的情绪和主导地位归因于女性政客或描述符归因的差异的形式的仁慈性别歧视。最后,我们对调查语言和语言外暗示的政客进行了多方面的性别偏见研究。我们评估了5种不同类型的性别偏见,评估社交媒体语言和话语中存在的覆盖范围,组合,名义,感性和词汇偏见。总体而言,我们发现,与以前的研究相反,覆盖范围和情感偏见表明对女性政客的公共兴趣平等。名义和词汇分析的结果并没有明显的敌对或仁慈的性别歧视,这表明这种兴趣不像男性政客那样专业或尊重。女性政客通常以其名字命名,并与他们的身体,衣服或家庭有关。这是一种与男性相似的治疗方法。在现在被禁止的极右翼子列表中,这种差异最大,尽管性别偏见的差异仍然出现在右和左倾的子列表中。我们将策划的数据集释放给公众以进行未来研究。
translated by 谷歌翻译
从文本数据中推断出具有政治收费的信息是文本和作者级别的自然语言处理(NLP)的流行研究主题。近年来,对这种研究的研究是在伯特等变形金刚的代表性的帮助下进行的。尽管取得了很大的成功,但我们可能会询问是否通过将基于转换的模型与其他知识表示形式相结合,是否可以进一步改善结果。为了阐明这个问题,本工作描述了一系列实验,以比较英语和葡萄牙语中文本的政治推断的替代模型配置。结果表明,某些文本表示形式 - 特别是,BERT预训练的语言模型与句法依赖模型的联合使用可能胜过多个实验环境的替代方案,这是进一步研究异质文本表示的潜在强大案例在这些以及可能的其他NLP任务中。
translated by 谷歌翻译
当个人指出或谈论其他人的话语时,语言永久不平等的能力最为明显。尽管当前对NLP中偏见的研究主要依赖于对特定群体的仇恨言论或偏见,但我们认为我们可以通过建模说话者,文本和目标来对偏见与语言使用之间的相互作用的相互作用更加微妙和细微的理解在文字中。在本文中,我们介绍了一个由美国国会议员注释的3033个英语推文的数据集,并介绍了人际情绪的注释,并对人际关系成员标签进行了“找到监督”。我们发现,诸如愤怒和厌恶之类的负面情绪主要用于群体外部情况,主要针对对方领导人。虽然人类可以表现出色,而不是鉴定人际群体成员资格的机会,但神经模型的表现要好得多。此外,人际关系成员资格和人际关系情感之间的共同编码使后者有一些表现的提高。这项工作旨在将NLP中偏见的研究从特定的偏见中重新调整为封装说话者,文本,目标和社会动态之间关系的偏见。本文的数据和代码可从https://github.com/venkatasg/interpersonal-dynamics获得
translated by 谷歌翻译
道德框架和情感会影响各种在线和离线行为,包括捐赠,亲环境行动,政治参与,甚至参与暴力抗议活动。自然语言处理中的各种计算方法(NLP)已被用来从文本数据中检测道德情绪,但是为了在此类主观任务中取得更好的性能,需要大量的手工注销训练数据。事实证明,以前对道德情绪注释的语料库已被证明是有价值的,并且在NLP和整个社会科学中都产生了新的见解,但仅限于Twitter。为了促进我们对道德修辞的作用的理解,我们介绍了道德基础Reddit语料库,收集了16,123个reddit评论,这些评论已从12个不同的子雷迪维特策划,由至少三个训练有素的注释者手工注释,用于8种道德情绪(即护理,相称性,平等,纯洁,权威,忠诚,瘦道,隐含/明确的道德)基于更新的道德基础理论(MFT)框架。我们使用一系列方法来为这种新的语料库(例如跨域分类和知识转移)提供基线道德句子分类结果。
translated by 谷歌翻译
数据增强是自然语言处理(NLP)模型的鲁棒性评估的重要组成部分,以及增强他们培训的数据的多样性。在本文中,我们呈现NL-Cogmenter,这是一种新的参与式Python的自然语言增强框架,它支持创建两个转换(对数据的修改)和过滤器(根据特定功能的数据拆分)。我们描述了框架和初始的117个变换和23个过滤器,用于各种自然语言任务。我们通过使用其几个转换来分析流行自然语言模型的鲁棒性来证明NL-Upmenter的功效。基础架构,Datacards和稳健性分析结果在NL-Augmenter存储库上公开可用(\ url {https://github.com/gem-benchmark/nl-augmenter})。
translated by 谷歌翻译
我们生活中情绪的重要性和普及性使得情感计算了一个非常重要和充满活力的工作。自动情感识别(AER)和情感分析的系统可以是巨大进展的促进者(例如,改善公共卫生和商业),而且还有巨大伤害的推动者(例如,用于抑制持不同政见者和操纵选民)。因此,情感计算社区必须积极地与其创作的道德后果搞。在本文中,我已经从AI伦理和情感认可文学中综合和组织信息,以提出与AER相关的五十个道德考虑因素。值得注意的是,纸张捏出了隐藏在如何框架的假设,并且在经常对数据,方法和评估的选择中的选择。特别关注在隐私和社会群体上的AER对AER的影响。沿途,关键建议是针对负责任的航空制作的。纸张的目标是促进和鼓励更加思考为什么自动化,如何自动化,以及如何在建立AER系统之前判断成功。此外,该纸张作为情感认可的有用介绍文件(补充调查文章)。
translated by 谷歌翻译
自然语言处理(NLP)是一个人工智能领域,它应用信息技术来处理人类语言,在一定程度上理解并在各种应用中使用它。在过去的几年中,该领域已经迅速发展,现在采用了深层神经网络的现代变体来从大型文本语料库中提取相关模式。这项工作的主要目的是调查NLP在药理学领域的最新使用。正如我们的工作所表明的那样,NLP是药理学高度相关的信息提取和处理方法。它已被广泛使用,从智能搜索到成千上万的医疗文件到在社交媒体中找到对抗性药物相互作用的痕迹。我们将覆盖范围分为五个类别,以调查现代NLP方法论,常见的任务,相关的文本数据,知识库和有用的编程库。我们将这五个类别分为适当的子类别,描述其主要属性和想法,并以表格形式进行总结。最终的调查介绍了该领域的全面概述,对从业者和感兴趣的观察者有用。
translated by 谷歌翻译
假新闻的迅速增加,这对社会造成重大损害,触发了许多假新闻相关研究,包括开发假新闻检测和事实验证技术。这些研究的资源主要是从Web数据中获取的公共数据集。我们通过三个观点调查了与假新闻研究相关的118个数据集:(1)假新闻检测,(2)事实验证,(3)其他任务;例如,假新闻和讽刺检测分析。我们还详细描述了他们的利用任务及其特征。最后,我们突出了假新闻数据集建设中的挑战以及解决这些挑战的一些研究机会。我们的调查通过帮助研究人员找到合适的数据集来促进假新闻研究,而无需重新发明轮子,从而提高了深度的假新闻研究。
translated by 谷歌翻译
少数群体一直在使用社交媒体来组织社会运动,从而产生深远的社会影响。黑人生活问题(BLM)和停止亚洲仇恨(SAH)是两个成功的社会运动,在Twitter上蔓延开来,促进了抗议活动和活动,反对种族主义,并提高公众对少数群体面临的其他社会挑战的认识。但是,以前的研究主要对与用户的推文或访谈进行了定性分析,这些推文或访谈可能无法全面和有效地代表所有推文。很少有研究以严格,量化和以数据为中心的方法探讨了BLM和SAH对话中的Twitter主题。因此,在这项研究中,我们采用了一种混合方法来全面分析BLM和SAH Twitter主题。我们实施了(1)潜在的DIRICHLET分配模型,以了解顶级高级单词和主题以及(2)开放编码分析,以确定整个推文中的特定主题。我们通过#BlackLivesMatter和#Stopasianhate主题标签收集了超过一百万条推文,并比较了它们的主题。我们的发现表明,这些推文在深度上讨论了各种有影响力的话题,社会正义,社会运动和情感情感都是两种运动的共同主题,尽管每个运动都有独特的子主题。我们的研究尤其是社交媒体平台上的社会运动的主题分析,以及有关AI,伦理和社会相互作用的文献。
translated by 谷歌翻译
我们提出了一种新颖的基准和相关的评估指标,用于评估文本匿名方法的性能。文本匿名化定义为编辑文本文档以防止个人信息披露的任务,目前遭受了面向隐私的带注释的文本资源的短缺,因此难以正确评估各种匿名方法提供的隐私保护水平。本文介绍了标签(文本匿名基准),这是一种新的开源注释语料库,以解决此短缺。该语料库包括欧洲人权法院(ECHR)的1,268个英语法院案件,并充满了有关每个文档中出现的个人信息的全面注释,包括其语义类别,标识符类型,机密属性和共同参考关系。与以前的工作相比,TAB语料库旨在超越传统的识别(仅限于检测预定义的语义类别),并且明确标记了这些文本跨越的标记,这些文本应该被掩盖,以掩盖该人的身份受到保护。除了介绍语料库及其注释层外,我们还提出了一套评估指标,这些指标是针对衡量文本匿名性的性能而定制的,无论是在隐私保护和公用事业保护方面。我们通过评估几个基线文本匿名模型的经验性能来说明基准和提议的指标的使用。完整的语料库及其面向隐私的注释准则,评估脚本和基线模型可在以下网址提供:
translated by 谷歌翻译
Covid-19锁定措施的引入和返回正常性的展望要求社会变化。最紧迫的问题是个人如何适应大流行。本文在重复措施设计中审查了对大流行的情绪反应。数据(n = 1698)于2020年4月(严格锁定措施期间),并于2021年4月(当疫苗接种计划获得牵引时)。我们要求参与者报告他们的情绪并在文本数据中表达这些。统计测试揭示了更好地调整大流行的平均趋势。然而,聚类分析建议更复杂的异构模式,具有良好的应对和辞职的参与者子组。语言计算分析发现,主题和N-GRAM频率转移到关注疫苗接种程序,远离一般担忧。讨论了对公共心理健康努力在识别风险上识别人们的努力的影响。数据集是公开可用的。
translated by 谷歌翻译