基于仿真的推理(SBI)是一个有前途的贝叶斯推理框架,可以减轻对分析可能性估计后验分布的需求。使用SBI算法中神经密度估计器的最新进展表明,以大量模拟为代价实现高保真后代的能力。当使用复杂的物理模拟时,这使得他们的应用程序可能非常耗时。在这项工作中,我们着重于使用模拟器的梯度来提高后密度估计的样本效率。我们提出了一种使用可区分模拟器执行神经后验估计(NPE)的新方法。我们展示了梯度信息如何有助于限制后部形状并提高样本效率。
translated by 谷歌翻译
推断基于实验观察的随机模型的参数是科学方法的核心。特别具有挑战性的设置是当模型强烈不确定时,即当不同的参数集产生相同的观察时。这在许多实际情况下出现,例如在推断无线电源的距离和功率时(是源关闭和弱或远远强,且强大且强大?)或估计电生理实验的放大器增益和底层脑活动。在这项工作中,我们通过利用由辅助观察集共享全局参数传达的附加信息来阐明这种不确定性的新方法。我们的方法基于对贝叶斯分层模型的标准化流程扩展了基于仿真的推断(SBI)的最新进展。我们通过模拟和实际EEG数据将其应用于可用于分析解决方案的激励示例,以便将其验证我们的提案,然后将其从计算神经科学逆变众所周知的非线性模型。
translated by 谷歌翻译
归一化流量是用于在物理系统中建模概率分布的有希望的工具。虽然最先进的流动精确地近似分布和能量,但物理中的应用还需要平滑能量来计算力量和高阶导数。此外,这种密度通常在非琐碎拓扑上定义。最近的一个例子是用于产生肽和小蛋白质的3D结构的Boltzmann发电机。这些生成模型利用内部坐标(Dihedrals,角度和粘合)的空间,这是过度矫戈尔和紧凑的间隔的产物。在这项工作中,我们介绍了一类在紧凑型间隔和高血症上工作的平滑混合转换。混合物转化采用根除方法在实践中反转它们,这已经防止了双向流动训练。为此,我们示出了通过逆函数定理从前向评估计算这种反转的参数梯度和力。我们展示了如此平滑流动的两个优点:它们允许通过力匹配匹配模拟数据,并且可以用作分子动力学模拟的电位。
translated by 谷歌翻译
The choice of approximate posterior distribution is one of the core problems in variational inference. Most applications of variational inference employ simple families of posterior approximations in order to allow for efficient inference, focusing on mean-field or other simple structured approximations. This restriction has a significant impact on the quality of inferences made using variational methods. We introduce a new approach for specifying flexible, arbitrarily complex and scalable approximate posterior distributions. Our approximations are distributions constructed through a normalizing flow, whereby a simple initial density is transformed into a more complex one by applying a sequence of invertible transformations until a desired level of complexity is attained. We use this view of normalizing flows to develop categories of finite and infinitesimal flows and provide a unified view of approaches for constructing rich posterior approximations. We demonstrate that the theoretical advantages of having posteriors that better match the true posterior, combined with the scalability of amortized variational approaches, provides a clear improvement in performance and applicability of variational inference.
translated by 谷歌翻译
We present extensive empirical evidence showing that current Bayesian simulation-based inference algorithms can produce computationally unfaithful posterior approximations. Our results show that all benchmarked algorithms -- (Sequential) Neural Posterior Estimation, (Sequential) Neural Ratio Estimation, Sequential Neural Likelihood and variants of Approximate Bayesian Computation -- can yield overconfident posterior approximations, which makes them unreliable for scientific use cases and falsificationist inquiry. Failing to address this issue may reduce the range of applicability of simulation-based inference. For this reason, we argue that research efforts should be made towards theoretical and methodological developments of conservative approximate inference algorithms and present research directions towards this objective. In this regard, we show empirical evidence that ensembling posterior surrogates provides more reliable approximations and mitigates the issue.
translated by 谷歌翻译
有条件神经密度估计器的仿真推断是解决科学逆问题的强大方法。然而,这些方法通常将底层向前模型视为一个黑匣子,没有办法利用等物学,例如协调。协调在科学模型中是常见的,然而将它们直接集成到表达推导网络中(例如标准化流动)并不简单。我们在这里描述了在参数和数据的联合转换下掺入协调的替代方法。我们的方法 - 称为组等级神经后后估计(GNPE) - 基于自始终标准化数据的“姿势”,同时估计在参数上后部。它是独立的架构,并适用于精确和近似的协调。作为现实世界的应用,我们使用GNPE从引力波观测到Astrophysical Block Block Systems的摊销推理。我们表明GNPE实现了最先进的准确性,同时减少了三个数量级的推理时间。
translated by 谷歌翻译
Normalizing Flows are generative models which produce tractable distributions where both sampling and density evaluation can be efficient and exact. The goal of this survey article is to give a coherent and comprehensive review of the literature around the construction and use of Normalizing Flows for distribution learning. We aim to provide context and explanation of the models, review current state-of-the-art literature, and identify open questions and promising future directions.
translated by 谷歌翻译
Simulation-based inference (SBI) solves statistical inverse problems by repeatedly running a stochastic simulator and inferring posterior distributions from model-simulations. To improve simulation efficiency, several inference methods take a sequential approach and iteratively adapt the proposal distributions from which model simulations are generated. However, many of these sequential methods are difficult to use in practice, both because the resulting optimisation problems can be challenging and efficient diagnostic tools are lacking. To overcome these issues, we present Truncated Sequential Neural Posterior Estimation (TSNPE). TSNPE performs sequential inference with truncated proposals, sidestepping the optimisation issues of alternative approaches. In addition, TSNPE allows to efficiently perform coverage tests that can scale to complex models with many parameters. We demonstrate that TSNPE performs on par with previous methods on established benchmark tasks. We then apply TSNPE to two challenging problems from neuroscience and show that TSNPE can successfully obtain the posterior distributions, whereas previous methods fail. Overall, our results demonstrate that TSNPE is an efficient, accurate, and robust inference method that can scale to challenging scientific models.
translated by 谷歌翻译
无似然推理涉及在给定的数据和模拟器模型的情况下推断参数值。模拟器是计算机代码,它采用参数,执行随机计算并输出模拟数据。在这项工作中,我们将模拟器视为一个函数,其输入为(1)参数和(2)伪随机绘制的向量。我们试图推断出以观察结果为条件的所有这些输入。这是具有挑战性的,因为最终的后验可能是高维且涉及强大的依赖性。我们使用归一化流量(柔性参数密度族)近似后验。训练数据是通过具有较大带宽值Epsilon的非似然重要性采样来生成的,这使得目标与先验相似。培训数据通过使用它来训练更新的归一流流程来“蒸馏”。该过程是迭代的,使用更新的流程作为重要性采样建议,并慢慢降低epsilon,从而使目标变得更接近后部。与大多数其他无似然的方法不同,我们避免将数据减少到低维汇总统计数据,因此可以实现更准确的结果。我们在两个充满挑战的排队和流行病学示例中说明了我们的方法。
translated by 谷歌翻译
基于采样的推理技术是现代宇宙学数据分析的核心;然而,这些方法与维度不良,通常需要近似或顽固的可能性。在本文中,我们描述了截短的边际神经比率估计(TMNRE)(即所谓的基于模拟的推断的新方法)自然避免了这些问题,提高了$(i)$效率,$(ii)$可扩展性和$ (iii)推断后的后续后续的可信度。使用宇宙微波背景(CMB)的测量,我们表明TMNRE可以使用比传统马尔可夫链蒙特卡罗(MCMC)方法更少模拟器呼叫的数量级来实现融合的后海后。值得注意的是,所需数量的样本有效地独立于滋扰参数的数量。此外,称为\ MEMPH {本地摊销}的属性允许对基于采样的方法无法访问的严格统计一致性检查的性能。 TMNRE承诺成为宇宙学数据分析的强大工具,特别是在扩展宇宙学的背景下,其中传统的基于采样的推理方法所需的时间级数融合可以大大超过$ \ Lambda $ CDM等简单宇宙学模型的时间。为了执行这些计算,我们使用开源代码\ texttt {swyft}来使用TMNRE的实现。
translated by 谷歌翻译
In the scope of "AI for Science", solving inverse problems is a longstanding challenge in materials and drug discovery, where the goal is to determine the hidden structures given a set of desirable properties. Deep generative models are recently proposed to solve inverse problems, but these currently use expensive forward operators and struggle in precisely localizing the exact solutions and fully exploring the parameter spaces without missing solutions. In this work, we propose a novel approach (called iPage) to accelerate the inverse learning process by leveraging probabilistic inference from deep invertible models and deterministic optimization via fast gradient descent. Given a target property, the learned invertible model provides a posterior over the parameter space; we identify these posterior samples as an intelligent prior initialization which enables us to narrow down the search space. We then perform gradient descent to calibrate the inverse solutions within a local region. Meanwhile, a space-filling sampling is imposed on the latent space to better explore and capture all possible solutions. We evaluate our approach on three benchmark tasks and two created datasets with real-world applications from quantum chemistry and additive manufacturing, and find our method achieves superior performance compared to several state-of-the-art baseline methods. The iPage code is available at https://github.com/jxzhangjhu/MatDesINNe.
translated by 谷歌翻译
Normalizing flows provide a general mechanism for defining expressive probability distributions, only requiring the specification of a (usually simple) base distribution and a series of bijective transformations. There has been much recent work on normalizing flows, ranging from improving their expressive power to expanding their application. We believe the field has now matured and is in need of a unified perspective. In this review, we attempt to provide such a perspective by describing flows through the lens of probabilistic modeling and inference. We place special emphasis on the fundamental principles of flow design, and discuss foundational topics such as expressive power and computational trade-offs. We also broaden the conceptual framing of flows by relating them to more general probability transformations. Lastly, we summarize the use of flows for tasks such as generative modeling, approximate inference, and supervised learning.
translated by 谷歌翻译
变异推理通常从近似分布q到后p中最小化“反向” kullbeck-leibeler(kl)kl(q || p)。最近的工作研究“正向” KL KL(P || Q),它与反向KL不同并不能导致低估不确定性的变异近似值。本文介绍了运输评分攀登(TSC),该方法通过使用汉密尔顿蒙特卡洛(HMC)和新型的自适应传输图来优化KL(P || Q)。传输图通过充当潜在变量空间和扭曲空间之间变量的变化来改善HMC的轨迹。TSC使用HMC样品在优化KL时动态训练传输图(P || Q)。TSC利用协同作用,在该协同作用下,更好的运输地图会导致更好的HMC采样,从而导致更好的传输地图。我们在合成和真实数据上演示了TSC。我们发现,在训练大规模数据的变异自动编码器时,TSC可以实现竞争性能。
translated by 谷歌翻译
变异推理(VI)的核心原理是将计算复杂后概率密度计算的统计推断问题转换为可拖动的优化问题。该属性使VI比几种基于采样的技术更快。但是,传统的VI算法无法扩展到大型数据集,并且无法轻易推断出越野数据点,而无需重新运行优化过程。该领域的最新发展,例如随机,黑框和摊销VI,已帮助解决了这些问题。如今,生成的建模任务广泛利用摊销VI来实现其效率和可扩展性,因为它利用参数化函数来学习近似的后验密度参数。在本文中,我们回顾了各种VI技术的数学基础,以构成理解摊销VI的基础。此外,我们还概述了最近解决摊销VI问题的趋势,例如摊销差距,泛化问题,不一致的表示学习和后验崩溃。最后,我们分析了改善VI优化的替代差异度量。
translated by 谷歌翻译
标准化流动,扩散归一化流量和变形自动置换器是强大的生成模型。在本文中,我们提供了一个统一的框架来通过马尔可夫链处理这些方法。实际上,我们考虑随机标准化流量作为一对马尔可夫链,满足一些属性,并表明许多用于数据生成的最先进模型适合该框架。马尔可夫链的观点使我们能够将确定性层作为可逆的神经网络和随机层作为大都会加速层,Langevin层和变形自身偏移,以数学上的声音方式。除了具有Langevin层的密度的层,扩散层或变形自身形式,也可以处理与确定性层或大都会加热器层没有密度的层。因此,我们的框架建立了一个有用的数学工具来结合各种方法。
translated by 谷歌翻译
从观察到的调查数据中,宇宙学的正向建模方法使在宇宙开头重建初始条件成为可能。但是,参数空间的高维度仍然构成挑战,探索完整的后部,传统算法(例如汉密尔顿蒙特卡洛(HMC))由于产生相关样本而在计算上效率低下发散(损失)功能。在这里,我们开发了一种称为变异自动采样(VBS)的混合方案,以通过学习用于蒙特卡洛采样的建议分布的变异近似来减轻这两种算法的缺点,并将其与HMC结合。变异分布被参数化为正常化的流量,并通过即时生成的样品学习,而从中提取的建议则减少了MCMC链中的自动相关长度。我们的归一化流程使用傅立叶空间卷积和元素的操作来扩展到高维度。我们表明,经过短暂的初始热身和训练阶段,VBS比简单的VI方法产生了更好的样品质量,并将采样阶段的相关长度缩短了10-50倍,仅使用HMC探索初始的后验64 $^3 $和128 $^3 $维度问题的条件,高信噪比数据观察的收益较大。
translated by 谷歌翻译
基于模拟的推理的神经后验估计方法可能不适合通过在多个观测值上进行条件来处理后验分布,因为它们可能需要大量的模拟器调用以产生准确的近似值。神经可能性估计方法可以自然处理多个观察结果,但需要单独的推论步骤,这可能会影响其效率和性能。我们引入了一种基于模拟的推理的新方法,该方法享有两种方法的好处。我们建议对单个观察值引起的后验分布进行建模,并引入采样算法,该算法将学习分数结合在一起以有效地从目标中进行样本。
translated by 谷歌翻译
隐式过程(IPS)代表一个灵活的框架,可用于描述各种模型,从贝叶斯神经网络,神经抽样器和数据生成器到许多其他模型。 IP还允许在功能空间上进行大致推断。公式的这种变化解决了参数空间的固有退化问题近似推断,即参数数量及其在大型模型中的强大依赖性。为此,文献中先前的作品试图采用IPS来设置先验并近似产生的后部。但是,这被证明是一项具有挑战性的任务。现有的方法可以调整先前的IP导致高斯预测分布,该分布未能捕获重要的数据模式。相比之下,通过使用另一个IP近似后验过程产生灵活预测分布的方法不能将先前的IP调整到观察到的数据中。我们在这里建议第一个可以实现这两个目标的方法。为此,我们依赖于先前IP的诱导点表示,就像在稀疏高斯过程中所做的那样。结果是一种可扩展的方法,用于与IP的近似推断,可以将先前的IP参数调整到数据中,并提供准确的非高斯预测分布。
translated by 谷歌翻译
马尔可夫链蒙特卡洛(MCMC),例如langevin Dynamics,有效地近似顽固的分布。但是,由于昂贵的数据采样迭代和缓慢的收敛性,它的用法在深层可变模型的背景下受到限制。本文提出了摊销的langevin Dynamics(ALD),其中数据划分的MCMC迭代完全被编码器的更新替换为将观测值映射到潜在变量中。这种摊销可实现有效的后验采样,而无需数据迭代。尽管具有效率,但我们证明ALD是MCMC算法有效的,其马尔可夫链在轻度假设下将目标后部作为固定分布。基于ALD,我们还提出了一个名为Langevin AutoCodeer(LAE)的新的深层变量模型。有趣的是,可以通过稍微修改传统自动编码器来实现LAE。使用多个合成数据集,我们首先验证ALD可以从目标后代正确获取样品。我们还在图像生成任务上评估了LAE,并证明我们的LAE可以根据变异推断(例如变异自动编码器)和其他基于MCMC的方法在测试可能性方面胜过现有的方法。
translated by 谷歌翻译
神经密度估计值证明在各种研究领域进行高效的仿真贝叶斯推理方面具有显着强大。特别是,Bayesflow框架使用两步方法来实现在仿真程序隐式地定义似然函数的设置中的摊销参数估计。但是当模拟是现实差的差异时,这种推断是多么忠实?在本文中,我们概念化了基于模拟的推论中出现的模型误操作的类型,并系统地研究了这些误操作下的Bayesflow框架的性能。我们提出了一个增强优化目标,它对潜伏数据空间上的概率结构施加了概率结构,并利用了最大平均差异(MMD)来检测推理期间的可能灾难性的误操作,破坏了所获得的结果的有效性。我们验证了许多人工和现实的误操作的检测标准,从玩具共轭模型到复杂的决策和疾病爆发动态的复杂模型应用于实际数据。此外,我们表明后部推理误差随着真实数据生成分布与潜在摘要空间中的典型模拟集之间的常数而增加。因此,我们展示了MMD的双重实用性作为检测模型误操作的方法和作为验证摊销贝叶斯推理的忠实性的代理。
translated by 谷歌翻译