尽管在时间序列重建的深度学习方法中取得了长足的进步,但由于其对优化损失的贡献可忽略不计,因此没有设计现有的方法来揭示具有微小信号强度的本地活动。但是,这种局部活动可以表示生理系统中重要的异常事件,例如额外的焦点触发心脏电波异常的传播。我们讨论了一种重建这种本地活动的新技术,尽管信号强度很小,但它是随后具有较大信号强度的全球活动的原因。我们的中心创新是通过明确建模并解开系统潜在的潜在隐藏内部干预措施的影响来解决此问题。在状态空间模型(SSM)的新型神经公式中,我们首先通过分别描述的相互作用的神经ODES系统引入潜在动力学的因果效应建模1)内部干预的连续时间动力学; 2)它对系统本地状态轨迹的影响。因为不能直接观察干预措施,而必须与观察到的后续效果脱离,所以我们整合了对系统的无天然干预动态的知识,并通过假设它是对实际观察到的差异来推断隐藏干预措施的推断和假设的无干预动态。我们证明了对重建异位焦点的提出框架的概念证明,从而破坏了从远程观察到正常心脏电气传播的过程。
translated by 谷歌翻译
虽然外源变量对时间序列分析的性能改善有重大影响,但在当前的连续方法中很少考虑这些序列间相关性和时间依赖性。多元时间序列的动力系统可以用复杂的未知偏微分方程(PDE)进行建模,这些方程(PDE)在科学和工程的许多学科中都起着重要作用。在本文中,我们提出了一个任意步骤预测的连续时间模型,以学习多元时间序列中的未知PDE系统,其管理方程是通过自我注意和封闭的复发神经网络参数化的。所提出的模型\下划线{变量及其对目标系列的影响。重要的是,使用特殊设计的正则化指南可以将模型简化为正则化的普通微分方程(ODE)问题,这使得可以触犯的PDE问题以获得数值解决方案,并且可行,以预测目标序列的多个未来值。广泛的实验表明,我们提出的模型可以在强大的基准中实现竞争精度:平均而言,它通过降低RMSE的$ 9.85 \%$和MAE的MAE $ 13.98 \%$的基线表现优于最佳基准,以获得任意步骤预测的MAE $。
translated by 谷歌翻译
纵向生物医学数据通常是稀疏时间网格和个体特定发展模式的特征。具体而言,在流行病学队列研究和临床登记处,我们面临的问题是在研究早期阶段中可以从数据中学到的问题,只有基线表征和一个后续测量。灵感来自最近的进步,允许将深度学习与动态建模相结合,我们调查这些方法是否可用于揭示复杂结构,特别是对于每个单独的两个观察时间点的极端小数据设置。然后,通过利用个体的相似性,可以使用不规则间距来获得有关个体动态的更多信息。我们简要概述了变形的自动化器(VAES)如何作为深度学习方法,可以与普通微分方程(ODES)相关联用于动态建模,然后具体研究这种方法的可行性,即提供个人特定的潜在轨迹的方法通过包括规律性假设和个人的相似性。我们还提供了对这种深度学习方法的描述作为过滤任务,以提供统计的视角。使用模拟数据,我们展示了方法可以在多大程度上从多大程度上恢复具有两个和四个未知参数的颂歌系统的单个轨迹,以及使用具有类似轨迹的个体群体,以及其崩溃的地方。结果表明,即使在极端的小数据设置中,这种动态深度学习方法也可能是有用的,但需要仔细调整。
translated by 谷歌翻译
动态系统参见在物理,生物学,化学等自然科学中广泛使用,以及电路分析,计算流体动力学和控制等工程学科。对于简单的系统,可以通过应用基本物理法来导出管理动态的微分方程。然而,对于更复杂的系统,这种方法变得非常困难。数据驱动建模是一种替代范式,可以使用真实系统的观察来了解系统的动态的近似值。近年来,对数据驱动的建模技术的兴趣增加,特别是神经网络已被证明提供了解决广泛任务的有效框架。本文提供了使用神经网络构建动态系统模型的不同方式的调查。除了基础概述外,我们还审查了相关的文献,概述了这些建模范式必须克服的数值模拟中最重要的挑战。根据审查的文献和确定的挑战,我们提供了关于有前途的研究领域的讨论。
translated by 谷歌翻译
事件摄像机对场景的亮度变化异步,独立于每个像素。由于属性,这些相机具有不同的特征:高动态范围(HDR),高时间分辨率和低功耗。但是,应将事件摄像机的结果处理为计算机视觉任务的替代表示。另外,它们通常很嘈杂,并且在几乎没有事件的地区导致性能不佳。近年来,许多研究人员试图重建事件中的视频。但是,由于缺乏不规则和不连续数据的时间信息,它们没有提供高质量的视频。为了克服这些困难,我们引入了一个E2V-SDE,该E2V-SDE由随机微分方程(SDE)控制在潜在空间中。因此,E2V-SDE可以在任意时间步骤中快速重建图像,并对看不见的数据做出现实的预测。此外,我们成功采用了各种图像组成技术来提高图像清晰度和时间一致性。通过对模拟和实际场景数据集进行广泛的实验,我们验证了我们的模型在各种视频重建设置下的表现优于最先进的方法。就图像质量而言,LPIPS得分提高了12%,重建速度比ET-NET高87%。
translated by 谷歌翻译
从视觉观察中了解动态系统的潜在因果因素被认为是对复杂环境中推理的推理的关键步骤。在本文中,我们提出了Citris,这是一种变异自动编码器框架,从图像的时间序列中学习因果表示,其中潜在的因果因素可能已被干预。与最近的文献相反,Citris利用了时间性和观察干预目标,以鉴定标量和多维因果因素,例如3D旋转角度。此外,通过引入归一化流,可以轻松扩展柑橘,以利用和删除已验证的自动编码器获得的删除表示形式。在标量因果因素上扩展了先前的结果,我们在更一般的环境中证明了可识别性,其中仅因果因素的某些成分受干预措施影响。在对3D渲染图像序列的实验中,柑橘类似于恢复基本因果变量的先前方法。此外,使用预验证的自动编码器,Citris甚至可以概括为因果因素的实例化,从而在SIM到现实的概括中开放了未来的研究领域,以进行因果关系学习。
translated by 谷歌翻译
Ordinary Differential Equations (ODE)-based models have become popular foundation models to solve many time-series problems. Combining neural ODEs with traditional RNN models has provided the best representation for irregular time series. However, ODE-based models require the trajectory of hidden states to be defined based on the initial observed value or the last available observation. This fact raises questions about how long the generated hidden state is sufficient and whether it is effective when long sequences are used instead of the typically used shorter sequences. In this article, we introduce CrossPyramid, a novel ODE-based model that aims to enhance the generalizability of sequences representation. CrossPyramid does not rely only on the hidden state from the last observed value; it also considers ODE latent representations learned from other samples. The main idea of our proposed model is to define the hidden state for the unobserved values based on the non-linear correlation between samples. Accordingly, CrossPyramid is built with three distinctive parts: (1) ODE Auto-Encoder to learn the best data representation. (2) Pyramidal attention method to categorize the learned representations (hidden state) based on the relationship characteristics between samples. (3) Cross-level ODE-RNN to integrate the previously learned information and provide the final latent state for each sample. Through extensive experiments on partially-observed synthetic and real-world datasets, we show that the proposed architecture can effectively model the long gaps in intermittent series and outperforms state-of-the-art approaches. The results show an average improvement of 10\% on univariate and multivariate datasets for both forecasting and classification tasks.
translated by 谷歌翻译
潜在世界模型使代理商可以对具有高维度观察的复杂环境进行推理。但是,适应新环境并有效利用先前的知识仍然是重大挑战。我们提出了变异因果动力学(VCD),这是一种结构化的世界模型,可利用跨环境的因果机制的不变性,以实现快速和模块化的适应性。通过因果分解过渡模型,VCD能够识别在不同环境中可重复使用的组件。这是通过结合因果发现和变异推断来以无监督方式共同学习潜在表示和过渡模型来实现的。具体而言,我们在表示模型和作为因果图形模型结构的过渡模型上优化了较低限制的证据。在对具有状态和图像观察的模拟环境的评估中,我们表明VCD能够成功识别因果变量,并在不同环境中发现一致的因果结构。此外,鉴于在以前看不见的中间环境中进行了少量观察,VCD能够识别动力学的稀疏变化并有效地适应。在此过程中,VCD显着扩展了潜在世界模型中当前最新的功能,同时在预测准确性方面也可以进行比较。
translated by 谷歌翻译
在存在潜在变量的情况下,从观察数据中估算因果关系的效果有时会导致虚假关系,这可能被错误地认为是因果关系。这是许多领域的重要问题,例如金融和气候科学。我们提出了序性因果效应变异自动编码器(SCEVAE),这是一种在隐藏混杂下的时间序列因果关系分析的新方法。它基于CEVAE框架和复发性神经网络。通过基于Pearl的Do-Calculus使用直接因果标准来计算因果链接的混杂变量强度。我们通过将其应用于具有线性和非线性因果链接的合成数据集,以显示SCEVAE的功效。此外,我们将方法应用于真实的气溶胶气候观察数据。我们将我们的方法与在合成数据上有或没有替代混杂因素的时间序列变形方法进行比较。我们证明我们的方法通过将两种方法与地面真理进行比较来表现更好。对于真实数据,我们使用因果链接的专家知识,并显示正确的代理变量的使用如何帮助数据重建。
translated by 谷歌翻译
基于预测方法的深度学习已成为时间序列预测或预测的许多应用中的首选方法,通常通常优于其他方法。因此,在过去的几年中,这些方法现在在大规模的工业预测应用中无处不在,并且一直在预测竞赛(例如M4和M5)中排名最佳。这种实践上的成功进一步提高了学术兴趣,以理解和改善深厚的预测方法。在本文中,我们提供了该领域的介绍和概述:我们为深入预测的重要构建块提出了一定深度的深入预测;随后,我们使用这些构建块,调查了最近的深度预测文献的广度。
translated by 谷歌翻译
Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare. The presence of anomalies can indicate novel or unexpected events, such as production faults, system defects, or heart fluttering, and is therefore of particular interest. The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns. This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning. It providing a taxonomy based on the factors that divide anomaly detection models into different categories. Aside from describing the basic anomaly detection technique for each category, the advantages and limitations are also discussed. Furthermore, this study includes examples of deep anomaly detection in time series across various application domains in recent years. It finally summarises open issues in research and challenges faced while adopting deep anomaly detection models.
translated by 谷歌翻译
像长期短期内存网络(LSTMS)和门控复发单元(GRUS)相同的经常性神经网络(RNN)是建模顺序数据的流行选择。它们的门控机构允许以来自传入观测的新信息在隐藏状态中编码的先前历史。在许多应用程序中,例如医疗记录,观察时间是不规则的并且携带重要信息。然而,LSTM和GRUS在观察之间假设恒定的时间间隔。为了解决这一挑战,我们提出了连续的经常性单位(CRU)-A神经结构,可以自然地处理观察之间的不规则时间间隔。 CRU的浇注机制采用卡尔曼滤波器的连续制剂,并且根据线性随机微分方程(SDE)和(2)潜伏状态在新观察进入时,在(1)之间的连续潜在传播之间的交替。在实证研究,我们表明CRU可以比神经常规差分方程(神经颂歌)的模型更好地插值不规则时间序列。我们还表明,我们的模型可以从IM-AGES推断动力学,并且卡尔曼有效地单挑出候选人的候选人,从而从嘈杂的观察中获得有价值的状态更新。
translated by 谷歌翻译
从电子健康记录(EHR)数据中进行有效学习来预测临床结果,这通常是具有挑战性的,因为在不规则的时间段记录的特征和随访的损失以及竞争性事件(例如死亡或疾病进展)。为此,我们提出了一种生成的事实模型,即Survlatent Ode,该模型采用了基于基于微分方程的复发性神经网络(ODE-RNN)作为编码器,以有效地对不规则采样的输入数据进行潜在状态的动力学有效地参数化。然后,我们的模型利用所得的潜在嵌入来灵活地估计多个竞争事件的生存时间,而无需指定事件特定危害功能的形状。我们展示了我们在Mimic-III上的竞争性能,这是一种从重症监护病房收集的自由纵向数据集,预测医院死亡率以及DANA-FARBER癌症研究所(DFCI)的数据,以预测静脉血栓症(静脉血栓症(DFCI)(DFCI)( VTE),是癌症患者的生命并发症,死亡作为竞争事件。幸存ODE优于分层VTE风险组的当前临床标准Khorana风险评分,同时提供临床上有意义且可解释的潜在表示。
translated by 谷歌翻译
用神经网络对物理系统的动力学建模的最新方法强制执行拉格朗日式或哈密顿结构,以改善预测和泛化。但是,当将坐标嵌入高维数据(例如图像)中时,这些方法要么失去解释性,要么只能应用于一个特定示例。我们介绍了一种新的无监督神经网络模型,该模型从图像中学习拉格朗日动态,并具有受益于预测和控制的解释性。该模型在广义坐标上渗透Lagrangian动力学,这些动力学是通过坐标感知的变异自动编码器(VAE)同时学习的。 VAE旨在说明由飞机中多个刚体组成的物理系统的几何形状。通过推断可解释的拉格朗日动力学,该模型学习了物理系统属性,例如动力学和势能,从而可以长期预测图像空间中的动力学和基于能量控制器的合成。
translated by 谷歌翻译
Latent variable models such as the Variational Auto-Encoder (VAE) have become a go-to tool for analyzing biological data, especially in the field of single-cell genomics. One remaining challenge is the interpretability of latent variables as biological processes that define a cell's identity. Outside of biological applications, this problem is commonly referred to as learning disentangled representations. Although several disentanglement-promoting variants of the VAE were introduced, and applied to single-cell genomics data, this task has been shown to be infeasible from independent and identically distributed measurements, without additional structure. Instead, recent methods propose to leverage non-stationary data, as well as the sparse mechanism shift assumption in order to learn disentangled representations with a causal semantic. Here, we extend the application of these methodological advances to the analysis of single-cell genomics data with genetic or chemical perturbations. More precisely, we propose a deep generative model of single-cell gene expression data for which each perturbation is treated as a stochastic intervention targeting an unknown, but sparse, subset of latent variables. We benchmark these methods on simulated single-cell data to evaluate their performance at latent units recovery, causal target identification and out-of-domain generalization. Finally, we apply those approaches to two real-world large-scale gene perturbation data sets and find that models that exploit the sparse mechanism shift hypothesis surpass contemporary methods on a transfer learning task. We implement our new model and benchmarks using the scvi-tools library, and release it as open-source software at \url{https://github.com/Genentech/sVAE}.
translated by 谷歌翻译
选择每个患者的最佳治疗计划需要随着时间的推移而准确地预测其结果轨迹的函数。虽然大型观察数据集构成丰富的信息来源,但他们也包含偏差,因为处理很少在实践中随机分配。为了提供准确和无偏见的预测,我们介绍了解除戒备的反事实经常性网络(DCRN),一种新的序列到序列架构,其通过学习患者历史的时间随时间估计治疗结果,这些历史记录被解除为三个单独的潜在因子:治疗因素,影响只有治疗选择;结果因素,影响结果;和一个混杂因素,影响两者。通过架构,完全受到治疗影响的因果结构随着时间的推移,我们推进预测准确性和疾病的理解,因为我们的建筑允许从业者推断哪个患者的轨迹影响哪些患者的轨迹,对比该领域的其他方法对比其他方法。我们证明DCRN在预测治疗响应中的当前最先进的方法,在实际和模拟数据中优于最新的方法。
translated by 谷歌翻译
我们提出了一种使用流生理时间序列的端到端模型,以准确预测低氧血症的近期风险,低氧血症是一种罕见但威胁生命的疾病,已知在手术期间造成严重的患者伤害。受到以下事实的启发:低氧血症事件是根据未来观察到的低spo2(即血氧饱和度)实例定义的,我们提出的模型使对未来的低spo2实例和低氧血症结果的混合推断,并由关节序列启用同时优化标签预测的判别解码器的自动编码器,以及对数据重建和预测进行了培训的两个辅助解码器,它们无缝地学习上下文的潜在表示,这些表示捕获了当前状态之间的过渡到未来状态。所有解码器都共享一个基于内存的编码器,有助于捕获患者测量的全局动态。对于一个主要的学术医学中心进行了72,081次手术的大型手术队列,我们​​的模型优于所有基础,包括最先进的低氧预测系统使用的模型。能够以临床上可接受的警报对近期低氧事件的警报进行分辨率的实时预测,尤其是更关键的持续性低氧血症,我们提出的模型在改善临床决策和减轻围手术期的减轻负担方面有希望。
translated by 谷歌翻译
在本文中,我们在用于生成时间序列建模的变形式自动统计器设置中实现神经常规方程。以对象为导向的代码方法是为了允许更容易的开发和研究以及本文中使用的所有代码可以在这里找到:https://github.com/simonmoesorensen/neural-ode-project最初是重新创建的结果与基线长短短期内存AutoEncoder相比的重建。然后用LSTM编码器扩展该模型,并受到弹簧振荡形式的时间序列组成的更复杂数据的攻击。该模型显示了承诺,并且能够为所有复杂的数据重建真正的轨迹,而不是基线模型的RMSE较小。然而,它能够捕获解码器中已知数据的时间序列的动态行为,但是对于弹簧数据的任何复杂性,不能够在真正的轨迹之后产生外推。最后进行了最终实验,其中模型也以68天的太阳能生产数据呈现,并且能够重建,即使在空间很少的数据时,也能够重建和基线。最后,将模型培训时间与基线进行比较。结果发现,对于少量数据,节点方法在训练中显着较慢,而不是基线,而对于较大量的数据,节点方法将在训练中等于或更快。本文以未来的工作部分结束,该部分描述了本文中提供的工作的许多自然扩展,其中示例正在研究输入数据的重要性,包括基线模型中的外推或测试更多特定的模型设置。
translated by 谷歌翻译
随着时间的流逝,估计反事实结果有可能通过协助决策者回答“假设”问题来解锁个性化医疗保健。现有的因果推理方法通常考虑观察和治疗决策之间的定期离散时间间隔,因此无法自然地模拟不规则采样的数据,这是实践中的共同环境。为了处理任意观察模式,我们将数据解释为基础连续时间过程中的样本,并建议使用受控微分方程的数学明确地对其潜在轨迹进行建模。这导致了一种新方法,即治疗效果神经控制的微分方程(TE-CDE),该方程可在任何时间点评估潜在的结果。此外,对抗性训练用于调整时间依赖性混杂,这在纵向环境中至关重要,这是常规时间序列中未遇到的额外挑战。为了评估解决此问题的解决方案,我们提出了一个基于肿瘤生长模型的可控仿真环境,以反映出各种临床方案的一系列场景。在所有模拟场景中,TE-CDE始终优于现有方法,并具有不规则采样。
translated by 谷歌翻译
因果表示学习是识别基本因果变量及其从高维观察(例如图像)中的关系的任务。最近的工作表明,可以从观测的时间序列中重建因果变量,假设它们之间没有瞬时因果关系。但是,在实际应用中,我们的测量或帧速率可能比许多因果效应要慢。这有效地产生了“瞬时”效果,并使以前的可识别性结果无效。为了解决这个问题,我们提出了ICITRI,这是一种因果表示学习方法,当具有已知干预目标的完美干预措施时,可以在时间序列中处理瞬时效应。 Icitris从时间观察中识别因果因素,同时使用可区分的因果发现方法来学习其因果图。在三个视频数据集的实验中,Icitris准确地识别了因果因素及其因果图。
translated by 谷歌翻译