Bayesian optimization (BO) is one of the most effective methods for closed-loop experimental design and black-box optimization. However, a key limitation of BO is that it is an inherently sequential algorithm (one experiment is proposed per round) and thus cannot directly exploit high-throughput (parallel) experiments. Diverse modifications to the BO framework have been proposed in the literature to enable exploitation of parallel experiments but such approaches are limited in the degree of parallelization that they can achieve and can lead to redundant experiments (thus wasting resources and potentially compromising performance). In this work, we present new parallel BO paradigms that exploit the structure of the system to partition the design space. Specifically, we propose an approach that partitions the design space by following the level sets of the performance function and an approach that exploits partially-separable structures of the performance function found. We conduct extensive numerical experiments using a reactor case study to benchmark the effectiveness of these approaches against a variety of state-of-the-art parallel algorithms reported in the literature. Our computational results show that our approaches significantly reduce the required search time and increase the probability of finding a global (rather than local) solution.
translated by 谷歌翻译
由于其数据效率,贝叶斯优化已经出现在昂贵的黑盒优化的最前沿。近年来,关于新贝叶斯优化算法及其应用的发展的研究激增。因此,本文试图对贝叶斯优化的最新进展进行全面和更新的调查,并确定有趣的开放问题。我们将贝叶斯优化的现有工作分为九个主要群体,并根据所提出的算法的动机和重点。对于每个类别,我们介绍了替代模型的构建和采集功能的适应的主要进步。最后,我们讨论了开放的问题,并提出了有希望的未来研究方向,尤其是在分布式和联合优化系统中的异质性,隐私保护和公平性方面。
translated by 谷歌翻译
多目标优化问题的目标在现实世界中通常会看到不同的评估成本。现在,此类问题被称为异质目标(HE-MOPS)的多目标优化问题。然而,到目前为止,只有少数研究来解决HE-MOPS,其中大多数专注于一个快速目标和一个缓慢目标的双向目标问题。在这项工作中,我们旨在应对具有两个以上黑盒和异质目标的He-mops。为此,我们通过利用He-Mops中廉价且昂贵的目标的不同数据集来减轻因评估不同目标而导致的搜索偏见,从而减轻了廉价且昂贵的目标,从而为HE-MOPS开发了多目标贝叶斯进化优化方法。为了充分利用两个不同的培训数据集,一种对所有目标进行评估的解决方案,另一个与仅在快速目标上进行评估的解决方案,构建了两个单独的高斯过程模型。此外,提出了一种新的采集函数,以减轻对快速目标的搜索偏见,从而在收敛与多样性之间达到平衡。我们通过对广泛使用的多/多目标基准问题进行测试来证明该算法的有效性,这些问题被认为是异质昂贵的。
translated by 谷歌翻译
Bayesian optimization provides sample-efficient global optimization for a broad range of applications, including automatic machine learning, engineering, physics, and experimental design. We introduce BOTORCH, a modern programming framework for Bayesian optimization that combines Monte-Carlo (MC) acquisition functions, a novel sample average approximation optimization approach, autodifferentiation, and variance reduction techniques. BOTORCH's modular design facilitates flexible specification and optimization of probabilistic models written in PyTorch, simplifying implementation of new acquisition functions. Our approach is backed by novel theoretical convergence results and made practical by a distinctive algorithmic foundation that leverages fast predictive distributions, hardware acceleration, and deterministic optimization. We also propose a novel "one-shot" formulation of the Knowledge Gradient, enabled by a combination of our theoretical and software contributions. In experiments, we demonstrate the improved sample efficiency of BOTORCH relative to other popular libraries.34th Conference on Neural Information Processing Systems (NeurIPS 2020),
translated by 谷歌翻译
大多数机器学习算法由一个或多个超参数配置,必须仔细选择并且通常会影响性能。为避免耗时和不可递销的手动试验和错误过程来查找性能良好的超参数配置,可以采用各种自动超参数优化(HPO)方法,例如,基于监督机器学习的重新采样误差估计。本文介绍了HPO后,本文审查了重要的HPO方法,如网格或随机搜索,进化算法,贝叶斯优化,超带和赛车。它给出了关于进行HPO的重要选择的实用建议,包括HPO算法本身,性能评估,如何将HPO与ML管道,运行时改进和并行化结合起来。这项工作伴随着附录,其中包含关于R和Python的特定软件包的信息,以及用于特定学习算法的信息和推荐的超参数搜索空间。我们还提供笔记本电脑,这些笔记本展示了这项工作的概念作为补充文件。
translated by 谷歌翻译
We present the GPry algorithm for fast Bayesian inference of general (non-Gaussian) posteriors with a moderate number of parameters. GPry does not need any pre-training, special hardware such as GPUs, and is intended as a drop-in replacement for traditional Monte Carlo methods for Bayesian inference. Our algorithm is based on generating a Gaussian Process surrogate model of the log-posterior, aided by a Support Vector Machine classifier that excludes extreme or non-finite values. An active learning scheme allows us to reduce the number of required posterior evaluations by two orders of magnitude compared to traditional Monte Carlo inference. Our algorithm allows for parallel evaluations of the posterior at optimal locations, further reducing wall-clock times. We significantly improve performance using properties of the posterior in our active learning scheme and for the definition of the GP prior. In particular we account for the expected dynamical range of the posterior in different dimensionalities. We test our model against a number of synthetic and cosmological examples. GPry outperforms traditional Monte Carlo methods when the evaluation time of the likelihood (or the calculation of theoretical observables) is of the order of seconds; for evaluation times of over a minute it can perform inference in days that would take months using traditional methods. GPry is distributed as an open source Python package (pip install gpry) and can also be found at https://github.com/jonaselgammal/GPry.
translated by 谷歌翻译
Bayesian Optimization is a useful tool for experiment design. Unfortunately, the classical, sequential setting of Bayesian Optimization does not translate well into laboratory experiments, for instance battery design, where measurements may come from different sources and their evaluations may require significant waiting times. Multi-fidelity Bayesian Optimization addresses the setting with measurements from different sources. Asynchronous batch Bayesian Optimization provides a framework to select new experiments before the results of the prior experiments are revealed. This paper proposes an algorithm combining multi-fidelity and asynchronous batch methods. We empirically study the algorithm behavior, and show it can outperform single-fidelity batch methods and multi-fidelity sequential methods. As an application, we consider designing electrode materials for optimal performance in pouch cells using experiments with coin cells to approximate battery performance.
translated by 谷歌翻译
Bayesian Optimization(BO)是全球优化的黑匣子客观功能的方法,这是昂贵的评估。 Bo Powered实验设计在材料科学,化学,实验物理,药物开发等方面发现了广泛的应用。这项工作旨在提请注意应用BO在设计实验中的益处,并提供博手册,涵盖方法和软件,为了方便任何想要申请或学习博的人。特别是,我们简要解释了BO技术,审查BO中的所有应用程序在添加剂制造中,比较和举例说明不同开放BO库的功能,解锁BO的新潜在应用,以外的数据(例如,优先输出)。本文针对读者,了解贝叶斯方法的一些理解,但不一定符合添加剂制造的知识;软件性能概述和实施说明是任何实验设计从业者的乐器。此外,我们在添加剂制造领域的审查突出了博的目前的知识和技术趋势。本文在线拥有补充材料。
translated by 谷歌翻译
我们考虑使用昂贵的功能评估(也称为实验)的黑匣子多目标优化(MOO)的问题,其中目标是通过最小化实验的总资源成本来近似真正的帕累托解决方案。例如,在硬件设计优化中,我们需要使用昂贵的计算模拟找到权衡性能,能量和面积开销的设计。关键挑战是选择使用最小资源揭示高质量解决方案的实验顺序。在本文中,我们提出了一种基于输出空间熵(OSE)搜索原理来解决MOO问题的一般框架:选择最大化每单位资源成本的信息的实验,这是真正的帕累托前线所获得的信息。我们适当地实例化了OSE搜索的原理,以导出以下四个Moo问题设置的高效算法:1)最基本的EM单一保真设置,实验昂贵且准确; 2)处理EM黑匣子约束}在不执行实验的情况下无法进行评估; 3)离散的多保真设置,实验可以在消耗的资源量和评估准确度时变化; 4)EM连续保真设置,其中连续函数近似导致巨大的实验空间。不同综合和现实世界基准测试的实验表明,基于OSE搜索的算法在既有计算效率和MOO解决方案的准确性方面改进了最先进的方法。
translated by 谷歌翻译
自动化封路计优化(HPO)已经获得了很大的普及,并且是大多数自动化机器学习框架的重要成分。然而,设计HPO算法的过程仍然是一个不系统和手动的过程:确定了现有工作的限制,提出的改进是 - 即使是专家知识的指导 - 仍然是一定任意的。这很少允许对哪些算法分量的驾驶性能进行全面了解,并且承载忽略良好算法设计选择的风险。我们提出了一个原理的方法来实现应用于多倍性HPO(MF-HPO)的自动基准驱动算法设计的原则方法:首先,我们正式化包括的MF-HPO候选的丰富空间,但不限于普通的HPO算法,然后呈现可配置的框架覆盖此空间。要自动和系统地查找最佳候选者,我们遵循通过优化方法,并通过贝叶斯优化搜索算法候选的空间。我们挑战是否必须通过执行消融分析来挑战所发现的设计选择或可以通过更加天真和更简单的设计。我们观察到使用相对简单的配置,在某些方式中比建立的方法更简单,只要某些关键配置参数具有正确的值,就可以很好地执行得很好。
translated by 谷歌翻译
我们考虑基于活动的运输模拟器的校准和不确定性分析问题。基于活动的模型(ABM)依靠单个旅行者行为的统计模型来预测大都市地区的高阶旅行模式。输入参数通常是使用最大似然从旅行者调查中估算的。我们开发了一种使用高斯工艺模拟器使用流量流数据校准这些参数的方法。我们的方法扩展了传统的模拟器,以处理运输模拟器的高维和非平稳性。我们介绍了一个深度学习维度降低模型,该模型与高斯工艺模型共同估计以近似模拟器。我们使用几个模拟示例以及校准伊利诺伊州布卢明顿的关键参数来证明方法。
translated by 谷歌翻译
贝叶斯优化是一种顺序设计形式:使用适当灵活的非线性回归模型理想化输入 - 输出关系;符合初始实验活动的数据;设计并优化用于选择拟合模型(例如,通过预测方程)下的下一个实验条件的标准,以实现兴趣的结果(例如最小值);在这些条件下获取输出并更新拟合后重复。在许多情况下,这种在新数据采集标准上的“内部优化”是麻烦的,因为它是非凸/高度多模态,可能是非可分子的,或者可能可能挫败数值优化器,尤其是当推理需要蒙特卡罗时。在这种情况下,在随机候选中,用离散的一个离散的一个不常见的情况并不罕见。在这里,我们提出了基于现有输入设计的Delaunay三角测量的候选者。除了详细构建这些“Tricands”之外,基于传统凸船库围绕的简单包装,我们基于所涉及的几何标准的性质促进了几个优势。然后,我们证明了与数值优化的采集和基于随机候选的替代品相比,特异性如何导致Tricands如何导致更好的贝叶斯优化性能。
translated by 谷歌翻译
制造中的一个自主实验平台据说能够进行顺序搜索,以便自行为先进材料寻找合适的制造条件,甚至用于发现具有最小的人为干预的新材料。这种平台的智能控制的核心是政策指导顺序实验,即根据到目前为止所做的事情来决定在下次进行下一个实验的地方。此类政策不可避免地违反勘探,而目前的做法是利用预期改进标准或其变体的贝叶斯优化框架。我们讨论是否利用与直接观察相关的元素和惊喜程度来促进剥削与勘探有益。我们使用两个现有的惊喜指标设计了一个惊喜的反应政策,称为香农惊喜和贝叶斯惊喜。我们的分析表明,令人惊讶的反应政策似乎更适合于在资源限制下快速表征响应面或设计地点的整体景观。我们认为未来派自治实验平台需要这种能力。我们没有声称我们有一个完全自主的实验平台,但相信我们目前的努力揭示了新灯或提供了不同的视角,因为研究人员正在赛车提升各种原始自治实验系统的自主权。
translated by 谷歌翻译
贝叶斯优化是黑匣子功能优化的流行框架。多重方法方法可以通过利用昂贵目标功能的低保真表示来加速贝叶斯优化。流行的多重贝叶斯策略依赖于采样政策,这些策略解释了在特定意见下评估目标函数的立即奖励,从而排除了更多的信息收益,这些收益可能会获得更多的步骤。本文提出了一个非侧重多倍数贝叶斯框架,以掌握优化的未来步骤的长期奖励。我们的计算策略具有两步的lookahead多因素采集函数,可最大程度地提高累积奖励,从而测量解决方案的改进,超过了前面的两个步骤。我们证明,所提出的算法在流行的基准优化问题上优于标准的多尺寸贝叶斯框架。
translated by 谷歌翻译
机器学习方法的最新进展以及扫描探针显微镜(SPMS)的可编程接口的新兴可用性使自动化和自动显微镜在科学界的关注方面推向了最前沿。但是,启用自动显微镜需要开发特定于任务的机器学习方法,了解物理发现与机器学习之间的相互作用以及完全定义的发现工作流程。反过来,这需要平衡领域科学家的身体直觉和先验知识与定义实验目标和机器学习算法的奖励,这些算法可以将它们转化为特定的实验协议。在这里,我们讨论了贝叶斯活跃学习的基本原理,并说明了其对SPM的应用。我们从高斯过程作为一种简单的数据驱动方法和对物理模型的贝叶斯推断作为基于物理功能的扩展的贝叶斯推断,再到更复杂的深内核学习方法,结构化的高斯过程和假设学习。这些框架允许使用先验数据,在光谱数据中编码的特定功能以及在实验过程中表现出的物理定律的探索。讨论的框架可以普遍应用于结合成像和光谱,SPM方法,纳米识别,电子显微镜和光谱法以及化学成像方法的所有技术,并且对破坏性或不可逆测量的影响特别影响。
translated by 谷歌翻译
由于其样本效率,贝叶斯优化(BO)已成为处理昂贵的黑匣子优化问题的流行方法,如Quand参数优化(HPO)。最近的实证实验表明,HPO问题的损失景观往往比以前假设的良好良好,即,在最佳的单模和凸起的情况下,如果它可以专注于那些有前途的当地地区,BO框架可能会更有效。在本文中,我们提出了船舶,这是一种双阶段方法,它针对中型配置空间量身定制,因为许多HPO问题中的一个遇到。在第一阶段,我们建立一个可扩展的全球代理模型,随机森林来描述整体景观结构。此外,我们通过上级树结构上的自下而上的方法选择有希望的次区域。在第二阶段,利用该子区域中的本地模型来建议接下来进行评估。实证实验表明,鲍威能够利用典型的HPO问题的结构,并特别吻合来自合成功能和HPO的中型问题。
translated by 谷歌翻译
贝叶斯优化(BO)是一种用于计算昂贵的黑盒优化的方法,例如模拟器校准和深度学习方法的超参数优化。在BO中,采用动态更新的计算廉价替代模型来学习黑框函数的投入输出关系。该替代模型用于探索和利用输入空间的有前途的区域。多点BO方法采用单个经理/多个工人策略,以在较短的时间内实现高质量的解决方案。但是,多点生成方案中的计算开销是设计BO方法的主要瓶颈,可以扩展到数千名工人。我们提出了一种异步分配的BO(ADBO)方法,其中每个工人都会运行搜索,并异步地传达所有其他没有经理的工人的黑框评估的输入输出值。我们将方法扩展到4,096名工人,并证明了解决方案质量和更快的收敛质量。我们证明了我们从Exascale计算项目烛台基准调整神经网络超参数的方法的有效性。
translated by 谷歌翻译
网络物理系统(CPSS)通常是复杂且至关重要的;因此,确保系统的要求,即规格,很难满足。基于仿真的CPS伪造是一种实用的测试方法,可用于通过仅要求模拟正在测试的系统来提高对系统正确性的信心。由于每个仿真通常在计算上进行密集,因此一个重要的步骤是减少伪造规范所需的仿真数量。我们研究贝叶斯优化(BO),一种样本效率的方法,它学习了一个替代模型,该模型描述了可能的输入信号的参数化与规范评估之间的关系。在本文中,我们改善了使用BO的伪造;首先采用两种突出的BO方法,一种适合本地替代模型,另一个适合当地的替代模型,利用了用户的先验知识。其次,本文介绍了伪造功能的采集函数的表述。基准评估显示,使用BO的局部替代模型来伪造以前难以伪造的基准示例的显着改善。在伪造过程中使用先验知识被证明是在模拟预算有限时特别重要的。对于某些基准问题,采集功能的选择清楚地影响了成功伪造所需的模拟数量。
translated by 谷歌翻译
自动化的HyperParameter优化(HPO)可以支持从业者在机器学习模型中获得峰值性能。然而,通常缺乏有价值的见解,以对不同的超参数对最终模型性能的影响。这种缺乏可解释性使得难以信任并理解自动化的HPO过程及其结果。我们建议使用可解释的机器学习(IML)从HPO中获得的实验数据与贝叶斯优化(BO)一起获得见解。 BO倾向于专注于具有潜在高性能配置的有前途的区域,从而诱导采样偏差。因此,许多IML技术,例如部分依赖曲线(PDP),承载产生偏置解释的风险。通过利用BO代理模型的后部不确定性,我们引入了具有估计置信带的PDP的变种。我们建议分区Quand参数空间以获得相关子区域的更自信和可靠的PDP。在一个实验研究中,我们为子区域内PDP的质量提高提供了定量证据。
translated by 谷歌翻译
贝叶斯优化提供了一种优化昂贵黑匣子功能的有效方法。它最近已应用于流体动力学问题。本文研究并在一系列合成测试函数上从经验上比较了常见的贝叶斯优化算法。它研究了采集函数和训练样本数量的选择,采集功能的精确计算以及基于蒙特卡洛的方法以及单点和多点优化。该测试功能被认为涵盖了各种各样的挑战,因此是理想的测试床,以了解贝叶斯优化的性能,并确定贝叶斯优化表现良好和差的一般情况。这些知识可以用于应用程序中,包括流体动力学的知识,这些知识是未知的。这项调查的结果表明,要做出的选择与相对简单的功能不相关,而乐观的采集功能(例如上限限制)应首选更复杂的目标函数。此外,蒙特卡洛方法的结果与分析采集函数的结果相当。在目标函数允许并行评估的情况下,多点方法提供了更快的替代方法,但它可能需要进行更多的客观函数评估。
translated by 谷歌翻译