手语制作(SLP)旨在将语言的表达方式转化为手语的相应语言,例如基于骨架的标志姿势或视频。现有的SLP型号是自动回旋(AR)或非自动入口(NAR)。但是,AR-SLP模型在解码过程中遭受了回归对均值和误差传播的影响。 NSLP-G是一种基于NAR的模型,在某种程度上解决了这些问题,但会带来其他问题。例如,它不考虑目标符号长度,并且会遭受虚假解码启动的影响。我们通过知识蒸馏(KD)提出了一种新型的NAR-SLP模型,以解决这些问题。首先,我们设计一个长度调节器来预测生成的符号姿势序列的末端。然后,我们采用KD,该KD从预训练的姿势编码器中提取空间语言特征以减轻虚假解码的启动。广泛的实验表明,所提出的方法在特里切特的手势距离和背面翻译评估中都显着优于现有的SLP模型。
translated by 谷歌翻译
手语制作(SLP)旨在将口语语言自动转化为符号序列。 SLP的核心过程是将符号光泽序列转换为其相应的标志姿势序列(G2P)。大多数现有的G2P模型通常以自回归方式执行这种条件的远程生成,这不可避免地导致错误的积累。为了解决这个问题,我们提出了一种量化量子序列序列的生成的矢量量化扩散方法,称为poseVQ扩散,这是一种迭代性非自动入学方法。具体而言,我们首先引入量化量化变量自动编码器(姿势VQVAE)模型,以表示姿势序列作为一系列潜在代码。然后,我们通过最近开发的扩散体系结构的扩展来对潜在离散空间进行建模。为了更好地利用时空信息,我们介绍了一种新颖的体系结构,即CodeUnet,以在离散空间中生成更高质量的姿势序列。此外,利用学习的代码,我们开发了一种新型的顺序k-nearest-neighbours方法,以预测相应的光泽序列的姿势序列的可变长度。因此,与自回旋G2P模型相比,我们的模型具有更快的采样速度,并产生明显更好的结果。与以前的非自动入学G2P方法相比,PoseVQ扩散通过迭代改进改善了预测的结果,从而在SLP评估基准上获得了最新的结果。
translated by 谷歌翻译
手语翻译作为一种具有深刻社会意义的技术,近年来吸引了研究人员的利益。但是,现有的标志语言翻译方法需要在开始翻译之前阅读所有视频,这导致高推理延迟,并限制了它们在现实方案中的应用程序。为了解决这个问题,我们提出了SIMULSLT,这是第一端到端同步标志语言翻译模型,可以同时将手语录像机转换为目标文本。 SIMUSLT由文本解码器,边界预测器和屏蔽编码器组成。我们1)使用Wait-K战略同时翻译。 2)基于集成和火灾模块设计一种新的边界预测器,以输出光泽边界,该边界用于模拟手语视频和光泽之间的对应关系。 3)提出了一种创新的重新编码方法来帮助模型获取更丰富的上下文信息,这允许现有的视频功能完全交互。在Rwth-Phoenix-MoreSt 2014T数据集上进行的实验结果表明,SIMUSLT实现了超过最新的端到端非同时标志语言翻译模型的BLEU分数,同时保持低延迟,这证明了我们方法的有效性。
translated by 谷歌翻译
A true interpreting agent not only understands sign language and translates to text, but also understands text and translates to signs. Much of the AI work in sign language translation to date has focused mainly on translating from signs to text. Towards the latter goal, we propose a text-to-sign translation model, SignNet, which exploits the notion of similarity (and dissimilarity) of visual signs in translating. This module presented is only one part of a dual-learning two task process involving text-to-sign (T2S) as well as sign-to-text (S2T). We currently implement SignNet as a single channel architecture so that the output of the T2S task can be fed into S2T in a continuous dual learning framework. By single channel, we refer to a single modality, the body pose joints. In this work, we present SignNet, a T2S task using a novel metric embedding learning process, to preserve the distances between sign embeddings relative to their dissimilarity. We also describe how to choose positive and negative examples of signs for similarity testing. From our analysis, we observe that metric embedding learning-based model perform significantly better than the other models with traditional losses, when evaluated using BLEU scores. In the task of gloss to pose, SignNet performed as well as its state-of-the-art (SoTA) counterparts and outperformed them in the task of text to pose, by showing noteworthy enhancements in BLEU 1 - BLEU 4 scores (BLEU 1: 31->39; ~26% improvement and BLEU 4: 10.43->11.84; ~14\% improvement) when tested on the popular RWTH PHOENIX-Weather-2014T benchmark dataset
translated by 谷歌翻译
知识蒸馏(KD),最称为模型压缩的有效方法,旨在将更大的网络(教师)的知识转移到更小的网络(学生)。传统的KD方法通常采用以监督方式培训的教师模型,其中输出标签仅作为目标处理。我们进一步扩展了这一受监督方案,我们为KD,即Oracle老师推出了一种新型的教师模型,它利用源输入和输出标签的嵌入来提取更准确的知识来转移到学生。所提出的模型遵循变压器网络的编码器解码器注意结构,这允许模型从输出标签上参加相关信息。在三种不同的序列学习任务中进行了广泛的实验:语音识别,场景文本识别和机器翻译。从实验结果来看,我们经验证明,拟议的模型在这些任务中改善了学生,同时在教师模型的培训时间内实现了相当大的速度。
translated by 谷歌翻译
手语是聋人和听力受损社区中使用的沟通语言的主要形式。在听力障碍和听力社区之间进行简单互相的沟通,建立一个能够将口语翻译成手语的强大系统,反之亦然是基本的。为此,标志语言识别和生产是制作这种双向系统的两个必要零件。手语识别和生产需要应对一些关键挑战。在这项调查中,我们审查了使用深度学习的手语制作(SLP)和相关领域的最近进展。为了有更现实的观点来签署语言,我们介绍了聋人文化,聋人中心,手语的心理视角,口语和手语之间的主要差异。此外,我们介绍了双向手语翻译系统的基本组成部分,讨论了该领域的主要挑战。此外,简要介绍了SLP中的骨干架构和方法,并提出了拟议的SLP分类物。最后,介绍了SLP和绩效评估的一般框架,也讨论了SLP最近的发展,优势和限制,评论可能的未来研究的可能线条。
translated by 谷歌翻译
我们解决了从文本描述中产生不同3D人类动作的问题。这项具有挑战性的任务需要两种方式的联合建模:从文本中理解和提取有用的人类以人为中心的信息,然后产生人类姿势的合理和现实序列。与大多数以前的工作相反,该作品着重于从文本描述中产生单一的,确定性的动作,我们设计了一种可以产生多种人类动作的变异方法。我们提出了Temos,这是一种具有人体运动数据的变异自动编码器(VAE)训练的文本生成模型,并结合了与VAE潜在空间兼容的文本编码器结合使用的文本编码器。我们显示Temos框架可以像先前的工作一样产生基于骨架的动画,以及更具表现力的SMPL身体运动。我们在套件运动语言基准上评估了我们的方法,尽管相对简单,但对艺术的状态表现出显着改善。代码和模型可在我们的网页上找到。
translated by 谷歌翻译
Language model pre-training, such as BERT, has significantly improved the performances of many natural language processing tasks. However, pre-trained language models are usually computationally expensive, so it is difficult to efficiently execute them on resourcerestricted devices. To accelerate inference and reduce model size while maintaining accuracy, we first propose a novel Transformer distillation method that is specially designed for knowledge distillation (KD) of the Transformer-based models. By leveraging this new KD method, the plenty of knowledge encoded in a large "teacher" BERT can be effectively transferred to a small "student" Tiny-BERT. Then, we introduce a new two-stage learning framework for TinyBERT, which performs Transformer distillation at both the pretraining and task-specific learning stages. This framework ensures that TinyBERT can capture the general-domain as well as the task-specific knowledge in BERT. TinyBERT 41 with 4 layers is empirically effective and achieves more than 96.8% the performance of its teacher BERT BASE on GLUE benchmark, while being 7.5x smaller and 9.4x faster on inference. TinyBERT 4 is also significantly better than 4-layer state-of-the-art baselines on BERT distillation, with only ∼28% parameters and ∼31% inference time of them. Moreover, TinyBERT 6 with 6 layers performs on-par with its teacher BERT BASE .
translated by 谷歌翻译
受到远见与语言之间的牢固联系的启发,我们的论文旨在探索文本中的3D人类全身动作的产生,以及其互惠任务,分别用于文本2Motion和Motion2Text, 。为了应对现有的挑战,尤其是为了使同一文本产生多个不同的动作,并避免了不良生产的琐碎的静止姿势序列,我们提出了使用运动令牌(一种离散和紧凑的运动表示)的使用。当将动作和文本信号视为运动和文本令牌时,这提供了一个级别的游戏地面。此外,我们的Motion2Text模块被整合到我们的文本2Motion训练管道的反对准过程中,在该管道中,合成文本与输入文本的显着偏差将受到较大的培训损失的惩罚;从经验上讲,这证明可以有效地提高性能。最后,通过将神经模型调整为机器翻译(NMT)的两种动作方式和文本之间的映射,可以促进。离散运动令牌上分布的这种自回归建模进一步使来自输入文本的姿势序列(可变长度)的非确定性产生。我们的方法是灵活的,可以用于Text2Motion和Motion2Text任务。在两个基准数据集上进行的经验评估证明了我们在这两个任务上的卓越性能在各种最新方法上。项目页面:https://ericguo5513.github.io/tm2t/
translated by 谷歌翻译
基于可穿戴传感器的人类动作识别(HAR)最近取得了杰出的成功。但是,基于可穿戴传感器的HAR的准确性仍然远远落后于基于视觉模式的系统(即RGB视频,骨架和深度)。多样化的输入方式可以提供互补的提示,从而提高HAR的准确性,但是如何利用基于可穿戴传感器的HAR的多模式数据的优势很少探索。当前,可穿戴设备(即智能手表)只能捕获有限的非视态模式数据。这阻碍了多模式HAR关联,因为它无法同时使用视觉和非视态模态数据。另一个主要挑战在于如何在有限的计算资源上有效地利用可穿戴设备上的多模式数据。在这项工作中,我们提出了一种新型的渐进骨骼到传感器知识蒸馏(PSKD)模型,该模型仅利用时间序列数据,即加速度计数据,从智能手表来解决基于可穿戴传感器的HAR问题。具体而言,我们使用来自教师(人类骨架序列)和学生(时间序列加速度计数据)模式的数据构建多个教师模型。此外,我们提出了一种有效的渐进学习计划,以消除教师和学生模型之间的绩效差距。我们还设计了一种称为自适应信心语义(ACS)的新型损失功能,以使学生模型可以自适应地选择其中一种教师模型或所需模拟的地面真实标签。为了证明我们提出的PSKD方法的有效性,我们对伯克利-MHAD,UTD-MHAD和MMACT数据集进行了广泛的实验。结果证实,与以前的基于单传感器的HAR方法相比,提出的PSKD方法具有竞争性能。
translated by 谷歌翻译
Stochastic human motion prediction aims to forecast multiple plausible future motions given a single pose sequence from the past. Most previous works focus on designing elaborate losses to improve the accuracy, while the diversity is typically characterized by randomly sampling a set of latent variables from the latent prior, which is then decoded into possible motions. This joint training of sampling and decoding, however, suffers from posterior collapse as the learned latent variables tend to be ignored by a strong decoder, leading to limited diversity. Alternatively, inspired by the diffusion process in nonequilibrium thermodynamics, we propose MotionDiff, a diffusion probabilistic model to treat the kinematics of human joints as heated particles, which will diffuse from original states to a noise distribution. This process offers a natural way to obtain the "whitened" latents without any trainable parameters, and human motion prediction can be regarded as the reverse diffusion process that converts the noise distribution into realistic future motions conditioned on the observed sequence. Specifically, MotionDiff consists of two parts: a spatial-temporal transformer-based diffusion network to generate diverse yet plausible motions, and a graph convolutional network to further refine the outputs. Experimental results on two datasets demonstrate that our model yields the competitive performance in terms of both accuracy and diversity.
translated by 谷歌翻译
在本文中,我们介绍了一条神经渲染管道,用于将一个人在源视频中的面部表情,头部姿势和身体运动转移到目标视频中的另一个人。我们将方法应用于手语视频的具有挑战性的案例:给定手语用户的源视频,我们可以忠实地传输执行的手册(例如握手,棕榈方向,运动,位置)和非手术(例如,眼睛凝视,凝视,面部表情,头部移动)以照片真实的方式标志着目标视频。为了有效捕获上述提示,这些线索对于手语交流至关重要,我们以最近引入的最健壮和最可靠的深度学习方法的有效组合来建立。使用3D感知表示,将身体部位的估计运动组合并重新定位到目标签名者。然后将它们作为我们的视频渲染网络的条件输入,从而生成时间一致和照片现实的视频。我们进行了详细的定性和定量评估和比较,这些评估和比较证明了我们的方法的有效性及其对现有方法的优势。我们的方法产生了前所未有的现实主义的有希望的结果,可用于手语匿名。此外,它很容易适用于重新制定其他类型的全身活动(舞蹈,表演,锻炼等)以及手语生产系统的合成模块。
translated by 谷歌翻译
现有的图像字幕的方法通常从左到右生成句子逐字,并在本地上下文中受到限制,包括给定的图像和历史记录生成的单词。在解码过程中,有许多研究目的是利用全球信息,例如迭代改进。但是,它仍然探讨了如何有效,有效地纳入未来的环境。为了回答这个问题,受到非自动回归图像字幕(NAIC)的启发,可以通过修改后的掩码操作利用两侧关系,我们的目标是将此进步嫁接到常规的自动回归图像字幕(AIC)模型,同时保持推理效率而无需进行推理效率额外的时间成本。具体而言,首先对AIC和NAIC模型结合了共享的视觉编码器,迫使视觉编码器包含足够有效的未来上下文。然后鼓励AIC模型捕获NAIC模型在其不自信的单词上互换的跨层互换的因果动态,该单词遵循教师学生的范式,并通过分配校准训练目标进行了优化。经验证据表明,我们所提出的方法清楚地超过了自动指标和人类评估的最新基线,对MS COCO基准测试。源代码可在以下网址获得:https://github.com/feizc/future-caption。
translated by 谷歌翻译
我们提出了一种使用变异隐式神经表示(INR)的动作条件人类运动产生方法。变分形式主义可以使INR的动作条件分布,从中可以轻松地采样表示形式以产生新的人类运动序列。我们的方法通过构造提供可变的长度序列生成,因为INR的一部分已针对随时间嵌入的整个任意长度进行了优化。相反,以前的作品报告了建模可变长度序列的困难。我们证实,使用变压器解码器的方法优于人类Act12,NTU-RGBD和UESTC数据集的所有相关方法,从现实主义和生成动作的多样性方面。令人惊讶的是,即使我们使用MLP解码器的方法也始终优于最先进的基于变压器的自动编码器。特别是,我们表明,在现实主义和多样性方面,我们方法生成的可变长度运动比最先进方法产生的固定长度运动更好。 https://github.com/pacerv/implicitmotion上的代码。
translated by 谷歌翻译
手语翻译(SLT),它以手语中的视觉内容以口语中的语言生成文本,很重要,以协助听力态度的沟通。灵感来自神经机翻译(NMT),最现有的SLT研究采用了一般序列来序列学习策略。然而,SLT与常规NMT任务显着不同,因为Sign语言通过多个视觉手动方面传达了消息。因此,在本文中,标志语言的这些独特的特征被制定为分层时空图表示,包括高级和微级图形,顶点表征指定的身体部位和边缘表示它们的交互。特别地,高级图表代表了手表和面部的区域中的图案,并且细级图考虑了面部区域的手和地标的关系。为了了解这些图形模式,提出了一种新颖的深度学习架构,即分层时空图神经网络(HST-GNN)。提出了具有邻域上下文的图形卷积和图形自我关注,以表征本地和全局图形属性。基准数据集的实验结果证明了该方法的有效性。
translated by 谷歌翻译
人类运动建模对于许多现代图形应用非常重要,这些应用通常需要专业技能。为了消除外行的技能障碍,最近的运动生成方法可以直接产生以自然语言为条件的人类动作。但是,通过各种文本输入,实现多样化和细粒度的运动产生,仍然具有挑战性。为了解决这个问题,我们提出了MotionDiffuse,这是第一个基于基于文本模型的基于文本驱动的运动生成框架,该框架证明了现有方法的几种期望属性。 1)概率映射。 MotionDiffuse不是确定性的语言映射,而是通过一系列注入变化的步骤生成动作。 2)现实的综合。 MotionDiffuse在建模复杂的数据分布和生成生动的运动序列方面表现出色。 3)多级操作。 Motion-Diffuse响应有关身体部位的细粒度指示,以及随时间变化的文本提示,任意长度运动合成。我们的实验表明,Motion-Diffuse通过说服文本驱动运动产生和动作条件运动的运动来优于现有的SOTA方法。定性分析进一步证明了MotionDiffuse对全面运动产生的可控性。主页:https://mingyuan-zhang.github.io/projects/motiondiffuse.html
translated by 谷歌翻译
与手语识别(SLR)相比,手语翻译(SLT)是一项尚未相对较多研究的任务。但是,SLR是一项认识到手语的独特语法的研究,该语言与口语不同,并且存在一个非障碍者无法轻易解释的问题。因此,我们将解决在手语视频中直接翻译口语的问题。为此,我们提出了一种基于签名者的骨架点执行翻译的新关键标准化方法,并在手语翻译中稳健地将这些点标准化。根据身体部位的不同,它通过定制的标准化方法有助于提高性能。此外,我们提出了一种随机框架选择方法,该方法可以同时实现框架增强和采样。最后,通过基于注意力的翻译模型将其转化为口语。我们的方法可以应用于可以无光泽的数据集应用于数据集的各种数据集。此外,定量实验评估证明了我们方法的卓越性。
translated by 谷歌翻译
Non-autoregressive neural machine translation (NAT) models suffer from the multi-modality problem that there may exist multiple possible translations of a source sentence, so the reference sentence may be inappropriate for the training when the NAT output is closer to other translations. In response to this problem, we introduce a rephraser to provide a better training target for NAT by rephrasing the reference sentence according to the NAT output. As we train NAT based on the rephraser output rather than the reference sentence, the rephraser output should fit well with the NAT output and not deviate too far from the reference, which can be quantified as reward functions and optimized by reinforcement learning. Experiments on major WMT benchmarks and NAT baselines show that our approach consistently improves the translation quality of NAT. Specifically, our best variant achieves comparable performance to the autoregressive Transformer, while being 14.7 times more efficient in inference.
translated by 谷歌翻译
For sequence generation, both autoregressive models and non-autoregressive models have been developed in recent years. Autoregressive models can achieve high generation quality, but the sequential decoding scheme causes slow decoding speed. Non-autoregressive models accelerate the inference speed with parallel decoding, while their generation quality still needs to be improved due to the difficulty of modeling multi-modalities in data. To address the multi-modality issue, we propose Diff-Glat, a non-autoregressive model featured with a modality diffusion process and residual glancing training. The modality diffusion process decomposes the modalities and reduces the modalities to learn for each transition. And the residual glancing sampling further smooths the modality learning procedures. Experiments demonstrate that, without using knowledge distillation data, Diff-Glat can achieve superior performance in both decoding efficiency and accuracy compared with the autoregressive Transformer.
translated by 谷歌翻译
“我们怎样才能通过简单地告诉他们,从动画电影剧本或移动机器人的3D角色我们希望他们做什么?” “我们如何非结构化和复杂的可以造一个句子,仍然从其生成合理的运动?”这些都是需要在长期得到回答,因为领域仍然处于起步阶段的问题。通过这些问题的启发,我们提出了产生成分操作的新技术,它可以处理复杂的输入句子。我们的产量是描绘在输入句子中的动作三维姿态序列。我们提出了一个分级二流顺序模型,探讨对应于给定的运动自然语言中的句子和三维姿态序列之间的精细联合级映射。我们学习运动的两个集管表示 - 每一个上半身下半身动作。我们的模型可以生成简短的句子描述单个动作以及长组成的句子描述多个连续叠加行动似是而非的姿势序列。我们评估的公开可用的KIT运动语言数据集含有与人类标注的句子3D姿势数据我们提出的模型。实验结果表明,我们的模型以50%的余量前进的状态的最先进的在客观评价基于文本的运动的合成。基于用户研究定性评价表明我们的合成运动被认为是最接近地面实况动作捕捉短期和组成句子。
translated by 谷歌翻译