本报告描述了我们的提交称为“ tarheels”的EGO4D:对象状态变更分类挑战。我们使用基于变压器的视频识别模型,并利用分隔的时空注意机制来对以中心视频的对象状态变化进行分类。我们的提交在挑战中取得了第二好的表现。此外,我们进行了一项消融研究,以表明识别以egipentric视频中的对象状态变化需要时间建模能力。最后,我们提出了几个积极和负面的例子,以可视化模型的预测。该代码可公开可用:https://github.com/md-mohaiminul/ObjectStateChange
translated by 谷歌翻译
We present a convolution-free approach to video classification built exclusively on self-attention over space and time. Our method, named "TimeSformer," adapts the standard Transformer architecture to video by enabling spatiotemporal feature learning directly from a sequence of framelevel patches. Our experimental study compares different self-attention schemes and suggests that "divided attention," where temporal attention and spatial attention are separately applied within each block, leads to the best video classification accuracy among the design choices considered. Despite the radically new design, TimeSformer achieves state-of-the-art results on several action recognition benchmarks, including the best reported accuracy on Kinetics-400 and Kinetics-600. Finally, compared to 3D convolutional networks, our model is faster to train, it can achieve dramatically higher test efficiency (at a small drop in accuracy), and it can also be applied to much longer video clips (over one minute long). Code and models are available at: https://github.com/ facebookresearch/TimeSformer.
translated by 谷歌翻译
大多数现代视频识别模型旨在在短视频剪辑上运行(例如,长度为5-10)。因此,将此类模型应用于长时间的电影理解任务是一项挑战,通常需要复杂的长期时间推理。最近引入的视频变形金刚通过使用远程时间自我注意来部分解决此问题。但是,由于自我注意力的二次成本,这种模型通常是昂贵且不切实际的。取而代之的是,我们提出了Vis4mer,这是一种有效的远程视频模型,结合了自我注意力的优势和最近引入的结构化状态空间序列(S4)层。我们的模型使用标准的变压器编码器进行短距离时空特征提取,以及多尺度的时间S4解码器,用于随后的远程时间推理。通过逐步减少每个解码器层处的时空特征分辨率和通道维度,Vis4mer在视频中学习了复杂的长期时空依赖性。此外,比相应的基于纯的自我注意力的模型,Vis4mer的价格更快为$ 2.63 \ times $ $,$ 8 \ times $ $ GPU内存。此外,Vis4mer实现最先进的结果,在长期视频理解(LVU)基准中,$ 9 $ 9 $长的电影视频分类任务中的$ 6 $。此外,我们表明我们的方法成功地将其推广到其他领域,从而在早餐和硬币程序活动数据集中取得了竞争成果。该代码可在以下网址公开获取:https://github.com/md-mohaiminul/vis4mer。
translated by 谷歌翻译
We present Multiscale Vision Transformers (MViT) for video and image recognition, by connecting the seminal idea of multiscale feature hierarchies with transformer models. Multiscale Transformers have several channel-resolution scale stages. Starting from the input resolution and a small channel dimension, the stages hierarchically expand the channel capacity while reducing the spatial resolution. This creates a multiscale pyramid of features with early layers operating at high spatial resolution to model simple low-level visual information, and deeper layers at spatially coarse, but complex, high-dimensional features. We evaluate this fundamental architectural prior for modeling the dense nature of visual signals for a variety of video recognition tasks where it outperforms concurrent vision transformers that rely on large scale external pre-training and are 5-10× more costly in computation and parameters. We further remove the temporal dimension and apply our model for image classification where it outperforms prior work on vision transformers. Code is available at: https: //github.com/facebookresearch/SlowFast.
translated by 谷歌翻译
视频变压器在主要视频识别基准上取得了令人印象深刻的结果,但它们遭受了高计算成本。在本文中,我们呈现Stts,一个令牌选择框架,动态地在输入视频样本上调节的时间和空间尺寸的几个信息令牌。具体而言,我们将令牌选择作为一个排名问题,估计每个令牌通过轻量级选择网络的重要性,并且只有顶级分数的人将用于下游评估。在时间维度中,我们将最相关的帧保持对识别作用类别的帧,而在空间维度中,我们确定特征映射中最辨别的区域,而不会影响大多数视频变换器中以分层方式使用的空间上下文。由于令牌选择的决定是不可差异的,因此我们采用了一个扰动最大的可分辨率Top-K运算符,用于最终培训。我们对动力学-400进行广泛的实验,最近推出的视频变压器骨架MVIT。我们的框架实现了类似的结果,同时需要计算20%。我们还表明我们的方法与其他变压器架构兼容。
translated by 谷歌翻译
We present a simple approach which can turn a ViT encoder into an efficient video model, which can seamlessly work with both image and video inputs. By sparsely sampling the inputs, the model is able to do training and inference from both inputs. The model is easily scalable and can be adapted to large-scale pre-trained ViTs without requiring full finetuning. The model achieves SOTA results and the code will be open-sourced.
translated by 谷歌翻译
执法和城市安全受到监视系统中的暴力事件的严重影响。尽管现代(智能)相机广泛可用且负担得起,但在大多数情况下,这种技术解决方案无能为力。此外,监测CCTV记录的人员经常显示出迟来的反应,从而导致对人和财产的灾难。因此,对迅速行动的暴力自动检测至关重要。拟议的解决方案使用了一种新颖的端到端深度学习视频视觉变压器(Vivit),可以在视频序列中熟练地辨别战斗,敌对运动和暴力事件。该研究提出了利用数据增强策略来克服较弱的电感偏见的缺点,同时在较小的培训数据集中训练视觉变压器。评估的结果随后可以发送给当地有关当局,可以分析捕获的视频。与最先进的(SOTA)相比,所提出的方法在某些具有挑战性的基准数据集上实现了吉祥的性能。
translated by 谷歌翻译
我们呈现了基于纯变压器的视频分类模型,在图像分类中最近的近期成功进行了借鉴。我们的模型从输入视频中提取了时空令牌,然后由一系列变压器层编码。为了处理视频中遇到的令牌的长序列,我们提出了我们模型的几种有效的变体,它们将输入的空间和时间维构建。虽然已知基于变换器的模型只有在可用的大型训练数据集时才有效,但我们展示了我们如何在训练期间有效地规范模型,并利用预先训练的图像模型能够在相对小的数据集上训练。我们进行彻底的消融研究,并在包括动力学400和600,史诗厨房,东西的多个视频分类基准上实现最先进的结果,其中 - 基于深度3D卷积网络的现有方法表现出优先的方法。为了促进进一步的研究,我们在https://github.com/google-research/scenic/tree/main/scenic/projects/vivit发布代码
translated by 谷歌翻译
在本文中,我们提出了第一个基于变压器的模型,该模型解决了以自我为中心凝视估计的具有挑战性的问题。我们观察到,全局场景上下文和本地视觉信息之间的连接对于从以自我为中心的视频帧进行凝视固定至关重要。为此,我们设计了变压器编码器将全局上下文嵌入为一个附加的视觉令牌,并进一步提出了一种新型的全球 - 本地相关(GLC)模块,以明确模拟全局令牌和每个本地令牌的相关性。我们在两个以自我为中心的视频数据集中验证了我们的模型-EGTEA凝视+和EGO4D。我们的详细消融研究证明了我们方法的好处。此外,我们的方法超过了先前的最新空间。我们还提供了其他可视化,以支持我们的主张,即全球 - 本地相关性是预测以自我为中心视频的凝视固定的关键表示。更多详细信息可以在我们的网站(https://bolinlai.github.io/glc-egogazeest)中找到。
translated by 谷歌翻译
The ability to distinguish between different movie scenes is critical for understanding the storyline of a movie. However, accurately detecting movie scenes is often challenging as it requires the ability to reason over very long movie segments. This is in contrast to most existing video recognition models, which are typically designed for short-range video analysis. This work proposes a State-Space Transformer model that can efficiently capture dependencies in long movie videos for accurate movie scene detection. Our model, dubbed TranS4mer, is built using a novel S4A building block, which combines the strengths of structured state-space sequence (S4) and self-attention (A) layers. Given a sequence of frames divided into movie shots (uninterrupted periods where the camera position does not change), the S4A block first applies self-attention to capture short-range intra-shot dependencies. Afterward, the state-space operation in the S4A block is used to aggregate long-range inter-shot cues. The final TranS4mer model, which can be trained end-to-end, is obtained by stacking the S4A blocks one after the other multiple times. Our proposed TranS4mer outperforms all prior methods in three movie scene detection datasets, including MovieNet, BBC, and OVSD, while also being $2\times$ faster and requiring $3\times$ less GPU memory than standard Transformer models. We will release our code and models.
translated by 谷歌翻译
在这项工作中,我们呈现SEQFormer,这是一个令人沮丧的视频实例分段模型。 SEQFormer遵循Vision变换器的原理,该方法模型视频帧之间的实例关系。然而,我们观察到一个独立的实例查询足以捕获视频中的时间序列,但应该独立地使用每个帧进行注意力机制。为此,SEQFormer在每个帧中定位一个实例,并聚合时间信息以学习视频级实例的强大表示,其用于动态地预测每个帧上的掩模序列。实例跟踪自然地实现而不进行跟踪分支或后处理。在YouTube-VIS数据集上,SEQFormer使用Reset-50个骨干和49.0 AP实现47.4个AP,其中Reset-101骨干,没有响铃和吹口哨。此类成果分别显着超过了以前的最先进的性能4.6和4.4。此外,与最近提出的Swin变压器集成,SEQFormer可以实现59.3的高得多。我们希望SEQFormer可能是一个强大的基线,促进了视频实例分段中的未来研究,同时使用更强大,准确,整洁的模型来实现该字段。代码和预先训练的型号在https://github.com/wjf5203/seqformer上公开使用。
translated by 谷歌翻译
最近,视频变压器在视频理解方面取得了巨大成功,超过了CNN性能;然而,现有的视频变换器模型不会明确地模拟对象,尽管对象对于识别操作至关重要。在这项工作中,我们呈现对象区域视频变换器(Orvit),一个\ emph {对象为中心}方法,它与直接包含对象表示的块扩展视频变压器图层。关键的想法是从早期层开始融合以对象形式的表示,并将它们传播到变压器层中,从而影响整个网络的时空表示。我们的orvit块由两个对象级流组成:外观和动态。在外观流中,“对象区域关注”模块在修补程序上应用自我关注和\ emph {对象区域}。以这种方式,Visual对象区域与统一修补程序令牌交互,并通过上下文化对象信息来丰富它们。我们通过单独的“对象 - 动态模块”进一步模型对象动态,捕获轨迹交互,并显示如何集成两个流。我们在四个任务和五个数据集中评估我们的模型:在某事物中的某些问题和几次射击动作识别,以及在AVA上的某些时空动作检测,以及在某种东西上的标准动作识别 - 某种东西 - 东西,潜水48和EPIC-Kitchen100。我们在考虑的所有任务和数据集中展示了强大的性能改进,展示了将对象表示的模型的值集成到变压器体系结构中。对于代码和预用模型,请访问项目页面\ url {https://roeiherz.github.io/orvit/}
translated by 谷歌翻译
在学习动作识别中,模型通常预先接受对象识别,例如图像,例如想象成,稍后在与视频的目标动作识别上微调。这种方法造成了良好的经验性能,特别是最近的基于变压器的视频架构。虽然最近许多作品旨在为行动识别设计更先进的变压器架构,但如何训练视频变压器的努力。在这项工作中,我们探索了几种培训范式并提出了两个结果。首先,视频变压器受益于各种视频数据集和标签空间的联合培训(例如,动力学是关注的,而某些东西是以运动为中心的)。其次,通过进一步与图像共同训练(作为单帧视频),视频变换器学习更好的视频表示。我们将这种方法作为用于行动识别的共同培训视频和图像(封面)。特别是,当基于时序形式的架构上的ImageNet-21k上掠夺时,盖子将动力学-400的前1个精度提高2.4%,动力学-600以2.3%,有些东西-V2达2.3%。当以前最先进的较大刻度图像数据集预先磨削时,覆盖覆盖在动力学-400(87.2%),动力学-600(87.9%),动力学-700(79.8%),有些内容达到最佳结果(70.9%),和时刻 - 时间(46.1%),具有简单的时空视频变压器。
translated by 谷歌翻译
基于变压器的方法最近在基于2D图像的视力任务上取得了巨大进步。但是,对于基于3D视频的任务,例如动作识别,直接将时空变压器应用于视频数据将带来沉重的计算和记忆负担,因为斑块的数量大大增加以及自我注意计算的二次复杂性。如何对视频数据的3D自我注意力进行有效地建模,这对于变压器来说是一个巨大的挑战。在本文中,我们提出了一种时间贴片移动(TPS)方法,用于在变压器中有效的3D自发明建模,以进行基于视频的动作识别。 TPS在时间尺寸中以特定的镶嵌图模式移动斑块的一部分,从而将香草的空间自我发项操作转换为时空的一部分,几乎没有额外的成本。结果,我们可以使用几乎相同的计算和记忆成本来计算3D自我注意力。 TPS是一个插件模块,可以插入现有的2D变压器模型中,以增强时空特征学习。提出的方法可以通过最先进的V1和V1,潜水-48和Kinetics400实现竞争性能,同时在计算和内存成本方面效率更高。 TPS的源代码可在https://github.com/martinxm/tps上找到。
translated by 谷歌翻译
我们研究了可靠的功能表示的任务,旨在在多个数据集上良好地概括以进行行动识别。我们建立了有关变形金刚的功效的方法。尽管在过去的十年中,我们目睹了视频动作识别的巨大进展,但如何培训单个模型可以在多个数据集中表现良好的单一模型仍然充满挑战而有价值。在这里,我们提出了一种新颖的多数据集训练范式,Multitrain,设计了两个新的损失条款,即信息丰富的损失和投射损失,旨在学习稳健的表现以进行行动识别。特别是,信息性损失最大化了功能嵌入的表现力,而每个数据集的投影损失遍历了数据集的类之间的内在关系。我们验证方法对五个具有挑战性的数据集的有效性,即动力学400,动力学700,矩矩,活动网络和某种效果 - v2数据集。广泛的实验结果表明,我们的方法可以始终如一地提高最新性能。
translated by 谷歌翻译
了解视频的时间动态是学习更好的视频表示的重要方面。最近,由于其能力捕获了输入序列的长期依赖性,因此对基于变压器的架构设计进行了广泛的探索。但是,我们发现这些视频变压器仍然有偏见地学习空间动力学而不是时间动力学,而伪造的虚假相关性对于它们的性能至关重要。根据观察结果,我们设计了简单而有效的自我监督任务,以便视频模型更好地学习时间动态。具体而言,对于借鉴空间偏见,我们的方法将视频框架的时间顺序作为额外的自我设计,并强制执行随机洗牌的框架以具有低信心的输出。此外,我们的方法还学习了连续帧之间视频令牌的时间流动方向,以增强与时间动力学的相关性。在各种视频动作识别任务下,我们证明了我们的方法的有效性及其与最先进的视频变压器的兼容性。
translated by 谷歌翻译
我们介绍了一种视听方法,用于远程文本到视频检索。与以前专为简短视频检索设计的方法(例如,持续时间为5-15秒)不同,我们的方法旨在检索捕获复杂人类动作的长时间视频。仅标准视频方法的一个挑战是与从这样的长视频中处理数百个密集提取的帧相关的大量计算成本。为了解决这个问题,我们建议用紧凑的音频提示替换视频的部分,这些线索简洁地汇总了动态音频事件,并且处理便宜。我们的方法称为Eclipse(带有声音编码的有效剪辑),通过添加一个统一的视听变压器块,将流行的剪辑模型调整为视听视频设置,该块从视频和音频流中捕获互补的提示。除了比仅长期视频的方法快2.92倍和2.34倍的内存效率外,我们的方法还可以在几个不同的远程视频数据集上,例如ActivityNet,QVHighighlights,Youcoook2,Youcoook2,Youcook2,Youcook2,Youcook2,Youcook2,Youcook2,Youcook2, Didemo和Charades。
translated by 谷歌翻译
我们将视频Swin Transformer作为基础体系结构实现,用于无返回时间定位和对象状态变更分类的任务。我们的方法在两个挑战上都取得了竞争性能。
translated by 谷歌翻译
该技术报告描述了无回报(PNR)时间定位挑战的EGO4D点的SVIT方法。我们提出了一个学习框架的结构(简称SVIT),该结构证明了仅在训练过程中仅可用的少量图像的结构才能改善视频模型。SVIT依靠两个关键见解。首先,由于图像和视频都包含结构化信息,因此我们用一组\ emph {对象令牌}丰富了一个可以在图像和视频中使用的\ emph {对象令牌}的模型。其次,视频中各个帧的场景表示应与静止图像的场景表示“对齐”。这是通过“框架夹一致性”损失实现的,该损失可确保图像和视频之间结构化信息的流动。SVIT在挑战测试集上获得了强劲的性能,并具有0.656绝对时间定位误差。
translated by 谷歌翻译
在本文中,我们向使用未标记的视频数据提出了用于视频变压器的自我监督培训。从给定的视频,我们创建了不同的空间尺寸和帧速率的本地和全球时空视图。我们的自我监督目标旨在匹配这些不同视图的特征,代表相同的视频,以不变于动作的时空变化。据我们所知,所提出的方法是第一个缓解对自我监督视频变压器(SVT)中的负样本或专用内存库的依赖。此外,由于变压器模型的灵活性,SVT使用动态调整的位置编码在单个架构内支持慢速视频处理,并支持沿着时空尺寸的长期关系建模。我们的方法在四个动作识别基准(动力学-400,UCF-101,HMDB-51和SSV2)上执行良好,并通过小批量尺寸更快地收敛。代码:https://git.io/j1juj.
translated by 谷歌翻译