Learning rich skills through temporal abstractions without supervision of external rewards is at the frontier of Reinforcement Learning research. Existing works mainly fall into two distinctive categories: variational and Laplacian-based option discovery. The former maximizes the diversity of the discovered options through a mutual information loss but overlooks coverage of the state space, while the latter focuses on improving the coverage of options by increasing connectivity during exploration, but does not consider diversity. In this paper, we propose a unified framework that quantifies diversity and coverage through a novel use of the Determinantal Point Process (DPP) and enables unsupervised option discovery explicitly optimizing both objectives. Specifically, we define the DPP kernel matrix with the Laplacian spectrum of the state transition graph and use the expected mode number in the trajectories as the objective to capture and enhance both diversity and coverage of the learned options. The proposed option discovery algorithm is extensively evaluated using challenging tasks built with Mujoco and Atari, demonstrating that our proposed algorithm substantially outperforms SOTA baselines from both diversity- and coverage-driven categories. The codes are available at https://github.com/LucasCJYSDL/ODPP.
translated by 谷歌翻译
已经开发了覆盖选项发现,以通过连接国家过渡图的Fiedler向量提供的嵌入空间中最遥远的状态,以改善具有稀疏奖励信号的单个奖励​​信号的增强学习的探索。但是,这些选项发现方法不能直接扩展到多代理方案,因为关节状态空间随系统中的代理数量而呈指数增长。因此,现有关于在多代理方案中采用选项的研究仍然依赖单代理选项发现,并且未直接发现可以改善代理联合状态空间连通性的联合选项。在本文中,我们表明,确实可以直接计算代理商之间具有协作探索性行为的多代理选项,同时仍然享受易于分解的便利。我们的关键思想是将联合状态空间近似为Kronecker图 - 单个代理的状态过渡图的Kronecker乘积,我们可以使用单个试剂的拉普拉斯谱的“联合状态空间”的Fiedler vector,以此为基础,该图可以直接估计。过渡图。这种分解使我们能够通过鼓励代理连接对应于估计的联合Fiedler载体的最小值或最大值来有效地构建多代理联合选项。基于多代理协作任务的评估表明,在更快的探索和较高的累积奖励方面,提出的算法可以成功识别多代理选项,并显着优于使用单代理选项或没有选项的先前工作。
translated by 谷歌翻译
我们提出了一种层次结构的增强学习方法Hidio,可以以自我监督的方式学习任务不合时宜的选项,同时共同学习利用它们来解决稀疏的奖励任务。与当前倾向于制定目标的低水平任务或预定临时的低级政策不同的层次RL方法不同,Hidio鼓励下级选项学习与手头任务无关,几乎不需要假设或很少的知识任务结构。这些选项是通过基于选项子对象的固有熵最小化目标来学习的。博学的选择是多种多样的,任务不可能的。在稀疏的机器人操作和导航任务的实验中,Hidio比常规RL基准和两种最先进的层次RL方法,其样品效率更高。
translated by 谷歌翻译
深度强化学习(DRL)和深度多机构的强化学习(MARL)在包括游戏AI,自动驾驶汽车,机器人技术等各种领域取得了巨大的成功。但是,众所周知,DRL和Deep MARL代理的样本效率低下,即使对于相对简单的问题设置,通常也需要数百万个相互作用,从而阻止了在实地场景中的广泛应用和部署。背后的一个瓶颈挑战是众所周知的探索问题,即如何有效地探索环境和收集信息丰富的经验,从而使政策学习受益于最佳研究。在稀疏的奖励,吵闹的干扰,长距离和非平稳的共同学习者的复杂环境中,这个问题变得更加具有挑战性。在本文中,我们对单格和多代理RL的现有勘探方法进行了全面的调查。我们通过确定有效探索的几个关键挑战开始调查。除了上述两个主要分支外,我们还包括其他具有不同思想和技术的著名探索方法。除了算法分析外,我们还对一组常用基准的DRL进行了全面和统一的经验比较。根据我们的算法和实证研究,我们终于总结了DRL和Deep Marl中探索的公开问题,并指出了一些未来的方向。
translated by 谷歌翻译
代理商学习广泛适用和通用策略具有重要意义,可以实现包括图像和文本描述在内的各种目标。考虑到这类感知的目标,深度加强学习研究的前沿是学习一个没有手工制作奖励的目标条件政策。要了解这种政策,最近的作品通常会像奖励到明确的嵌入空间中的给定目标的非参数距离。从不同的观点来看,我们提出了一种新的无监督学习方法,名为目标条件政策,具有内在动机(GPIM),共同学习抽象级别政策和目标条件的政策。摘要级别策略在潜在变量上被调节,以优化鉴别器,并发现进一步的不同状态,进一步呈现为目标条件策略的感知特定目标。学习鉴别者作为目标条件策略的内在奖励功能,以模仿抽象级别政策引起的轨迹。各种机器人任务的实验证明了我们所提出的GPIM方法的有效性和效率,其基本上优于现有技术。
translated by 谷歌翻译
当加强学习以稀疏的奖励应用时,代理必须花费很长时间探索未知环境而没有任何学习信号。抽象是一种为代理提供在潜在空间中过渡的内在奖励的方法。先前的工作着重于密集的连续潜在空间,或要求用户手动提供表示形式。我们的方法是第一个自动学习基础环境的离散抽象的方法。此外,我们的方法使用端到端可训练的正规后继代表模型在任意输入空间上起作用。对于抽象状态之间的过渡,我们以选项的形式训练一组时间扩展的动作,即动作抽象。我们提出的算法,离散的国家行动抽象(DSAA),在训练这些选项之间进行迭代交换,并使用它们有效地探索更多环境以改善状态抽象。结果,我们的模型不仅对转移学习,而且在在线学习环境中有用。我们从经验上表明,与基线加强学习算法相比,我们的代理能够探索环境并更有效地解决任务。我们的代码可在\ url {https://github.com/amnonattali/dsaa}上公开获得。
translated by 谷歌翻译
增强学习(RL)研究领域非常活跃,并具有重要的新贡献;特别是考虑到深RL(DRL)的新兴领域。但是,仍然需要解决许多科学和技术挑战,其中我们可以提及抽象行动的能力或在稀疏回报环境中探索环境的难以通过内在动机(IM)来解决的。我们建议通过基于信息理论的新分类法调查这些研究工作:我们在计算上重新审视了惊喜,新颖性和技能学习的概念。这使我们能够确定方法的优势和缺点,并展示当前的研究前景。我们的分析表明,新颖性和惊喜可以帮助建立可转移技能的层次结构,从而进一步抽象环境并使勘探过程更加健壮。
translated by 谷歌翻译
在现实世界中经营通常需要代理商来了解复杂的环境,并应用这种理解以实现一系列目标。这个问题被称为目标有条件的强化学习(GCRL),对长地平线的目标变得特别具有挑战性。目前的方法通过使用基于图形的规划算法增强目标条件的策略来解决这个问题。然而,他们努力缩放到大型高维状态空间,并采用用于有效地收集训练数据的探索机制。在这项工作中,我们介绍了继任者功能标志性(SFL),这是一种探索大型高维环境的框架,以获得熟练的政策熟练的策略。 SFL利用继承特性(SF)来捕获转换动态的能力,通过估计状态新颖性来驱动探索,并通过将状态空间作为基于非参数标志的图形来实现高级规划。我们进一步利用SF直接计算地标遍历的目标条件调节策略,我们用于在探索状态空间边缘执行计划“前沿”地标。我们在我们的Minigrid和VizDoom进行了实验,即SFL可以高效地探索大型高维状态空间和优于长地平线GCRL任务的最先进的基线。
translated by 谷歌翻译
尽管深度强化学习(RL)最近取得了许多成功,但其方法仍然效率低下,这使得在数据方面解决了昂贵的许多问题。我们的目标是通过利用未标记的数据中的丰富监督信号来进行学习状态表示,以解决这一问题。本文介绍了三种不同的表示算法,可以访问传统RL算法使用的数据源的不同子集使用:(i)GRICA受到独立组件分析(ICA)的启发,并训练深层神经网络以输出统计独立的独立特征。输入。 Grica通过最大程度地减少每个功能与其他功能之间的相互信息来做到这一点。此外,格里卡仅需要未分类的环境状态。 (ii)潜在表示预测(LARP)还需要更多的上下文:除了要求状态作为输入外,它还需要先前的状态和连接它们的动作。该方法通过预测当前状态和行动的环境的下一个状态来学习状态表示。预测器与图形搜索算法一起使用。 (iii)重新培训通过训练深层神经网络来学习国家表示,以学习奖励功能的平滑版本。该表示形式用于预处理输入到深度RL,而奖励预测指标用于奖励成型。此方法仅需要环境中的状态奖励对学习表示表示。我们发现,每种方法都有其优势和缺点,并从我们的实验中得出结论,包括无监督的代表性学习在RL解决问题的管道中可以加快学习的速度。
translated by 谷歌翻译
最新专为加强学习任务而设计的算法着重于找到一个最佳解决方案。但是,在许多实际应用中,重要的是开发具有多种策略的合理代理商。在本文中,我们提出了多样性引导的政策优化(DGPO),这是一个在同一任务中发现多种策略的政策框架。我们的算法使用多样性目标来指导潜在的条件政策,以在单个培训程序中学习一系列不同的策略。具体而言,我们将算法形式化为多样性受限的优化问题和外部奖励约束优化问题的组合。我们将约束优化作为概率推理任务解决,并使用策略迭代来最大化派生的下限。实验结果表明,我们的方法有效地在各种强化学习任务中找到了各种策略。我们进一步表明,与其他基线相比,DGPO达到了更高的多样性评分,并且具有相似的样品复杂性和性能。
translated by 谷歌翻译
我们提出了一种新型的参数化技能学习算法,旨在学习可转移的参数化技能并将其合成为新的动作空间,以支持长期任务中的有效学习。我们首先提出了新颖的学习目标 - 以轨迹为中心的多样性和平稳性 - 允许代理商能够重复使用的参数化技能。我们的代理商可以使用这些学习的技能来构建时间扩展的参数化行动马尔可夫决策过程,我们为此提出了一种层次的参与者 - 批判算法,旨在通过学习技能有效地学习高级控制政策。我们从经验上证明,所提出的算法使代理能够解决复杂的长途障碍源环境。
translated by 谷歌翻译
机器人的长期愿景是装备机器人,技能与人类的多功能性和精度相匹配。例如,在播放乒乓球时,机器人应该能够以各种方式返回球,同时精确地将球放置在所需位置。模拟这种多功能行为的常见方法是使用专家(MOE)模型的混合,其中每个专家是一个上下文运动原语。然而,由于大多数目标强迫模型涵盖整个上下文空间,因此学习此类MOS是具有挑战性的,这可以防止基元的专业化导致相当低质量的组件。从最大熵增强学习(RL)开始,我们将目标分解为优化每个混合组件的个体下限。此外,我们通过允许组件专注于本地上下文区域来介绍课程,使模型能够学习高度准确的技能表示。为此,我们使用与专家原语共同调整的本地上下文分布。我们的下限主张迭代添加新组件,其中新组件将集中在当前MOE不涵盖的本地上下文区域上。这种本地和增量学习导致高精度和多功能性的模块化MOE模型,其中可以通过在飞行中添加更多组件来缩放两个属性。我们通过广泛的消融和两个具有挑战性的模拟机器人技能学习任务来证明这一点。我们将我们的绩效与Live和Hireps进行了比较,这是一个已知的分层政策搜索方法,用于学习各种技能。
translated by 谷歌翻译
有效的探索仍然是强化学习中有挑战性的问题,特别是对于来自环境的外在奖励稀疏甚至完全忽视的任务。基于内在动机的重要进展显示了在简单环境中的有希望的结果,但通常会在具有多式联运和随机动力学的环境中陷入困境。在这项工作中,我们提出了一种基于条件变分推理的变分动力模型来模拟多模和随机性。通过在当前状态,动作和潜在变量的条件下产生下一个状态预测,我们考虑作为条件生成过程的环境状态动作转换,这提供了更好地了解动态并在勘探中引发更好的性能。我们派生了环境过渡的负面日志可能性的上限,并使用这样一个上限作为勘探的内在奖励,这使得代理通过自我监督的探索来学习技能,而无需观察外在奖励。我们在基于图像的仿真任务和真正的机器人操纵任务中评估所提出的方法。我们的方法优于若干基于最先进的环境模型的勘探方法。
translated by 谷歌翻译
建立可以探索开放式环境的自主机器,发现可能的互动,自主构建技能的曲目是人工智能的一般目标。发展方法争辩说,这只能通过可以生成,选择和学习解决自己问题的自主和本质上动机的学习代理人来实现。近年来,我们已经看到了发育方法的融合,特别是发展机器人,具有深度加强学习(RL)方法,形成了发展机器学习的新领域。在这个新域中,我们在这里审查了一组方法,其中深入RL算法训练,以解决自主获取的开放式曲目的发展机器人问题。本质上动机的目标条件RL算法训练代理商学习代表,产生和追求自己的目标。自我生成目标需要学习紧凑的目标编码以及它们的相关目标 - 成就函数,这导致与传统的RL算法相比,这导致了新的挑战,该算法设计用于使用外部奖励信号解决预定义的目标集。本文提出了在深度RL和发育方法的交叉口中进行了这些方法的类型,调查了最近的方法并讨论了未来的途径。
translated by 谷歌翻译
长期以来,能够接受和利用特定于人类的任务知识的增强学习(RL)代理人被认为是开发可扩展方法来解决长途问题的可能策略。尽管以前的作品已经研究了使用符号模型以及RL方法的可能性,但他们倾向于假设高级动作模型在低级别上是可执行的,并且流利者可以专门表征所有理想的MDP状态。但是,现实世界任务的符号模型通常是不完整的。为此,我们介绍了近似符号模型引导的增强学习,其中我们将正式化符号模型与基础MDP之间的关系,这将使我们能够表征符号模型的不完整性。我们将使用这些模型来提取将用于分解任务的高级地标。在低水平上,我们为地标确定的每个可能的任务次目标学习了一组不同的政策,然后将其缝合在一起。我们通过在三个不同的基准域进行测试来评估我们的系统,并显示即使是不完整的符号模型信息,我们的方法也能够发现任务结构并有效地指导RL代理到达目标。
translated by 谷歌翻译
Hierarchical methods in reinforcement learning have the potential to reduce the amount of decisions that the agent needs to perform when learning new tasks. However, finding a reusable useful temporal abstractions that facilitate fast learning remains a challenging problem. Recently, several deep learning approaches were proposed to learn such temporal abstractions in the form of options in an end-to-end manner. In this work, we point out several shortcomings of these methods and discuss their potential negative consequences. Subsequently, we formulate the desiderata for reusable options and use these to frame the problem of learning options as a gradient-based meta-learning problem. This allows us to formulate an objective that explicitly incentivizes options which allow a higher-level decision maker to adjust in few steps to different tasks. Experimentally, we show that our method is able to learn transferable components which accelerate learning and performs better than existing prior methods developed for this setting. Additionally, we perform ablations to quantify the impact of using gradient-based meta-learning as well as other proposed changes.
translated by 谷歌翻译
无监督的强化学习(URL)的目标是在任务域中找到奖励无知的先验政策,以便改善了监督下游任务的样本效率。尽管在下游任务中进行填补时,以这种先前的政策初始化的代理商可以获得更高的奖励,但在实践中如何实现最佳预定的先前政策,这仍然是一个悬而未决的问题。在这项工作中,我们介绍PORTER(策略轨迹集合正规化) - 一种可以适用于任何URL算法的预处理的一般方法,并且在基于数据和知识的URL算法上特别有用。它利用了在预处理过程中发现的一系列政策合奏,并将URL算法的政策移至更接近其最佳先验的政策。我们的方法基于理论框架,我们分析了其对白盒基准测试的实际影响,使我们能够完全控制PORTER。在我们的主要实验中,我们评估了无监督的强化学习基准(URLB)的Polter,该实验由3个域中的12个任务组成。我们通过将各种基于数据和知识的URL算法的性能平均提高19%,在最佳情况下最多可达40%,从而证明了方法的普遍性。在与调谐的基线和调整的polter的公平比较下,我们在URLB上建立了最新的新作品。
translated by 谷歌翻译
从过去的经验中发现有用的行为并将其转移到新任务的能力被认为是自然体现智力的核心组成部分。受神经科学的启发,发现在瓶颈状态下切换的行为一直被人们追求,以引起整个任务的最小描述长度的计划。先前的方法仅支持在线,政策,瓶颈状态发现,限制样本效率或离散的状态行动域,从而限制适用性。为了解决这个问题,我们介绍了基于模型的离线选项(MO2),这是一个脱机后视框架,支持在连续的状态行动空间上发现样品效率高效瓶颈选项。一旦脱机而在源域上学习了瓶颈选项,它们就会在线转移,以改善转移域的探索和价值估计。我们的实验表明,在复杂的长途连续控制任务上,具有稀疏,延迟的奖励,MO2的属性至关重要,并且导致性能超过最近的选项学习方法。其他消融进一步证明了对期权可预测性和信用分配的影响。
translated by 谷歌翻译
需要长马计划和持续控制能力的问题对现有的强化学习剂构成了重大挑战。在本文中,我们介绍了一种新型的分层增强学习代理,该学习代理将延时的技能与持续控制的技能与远期模型联系起来,以象征性的分离环境的计划进行计划。我们认为我们的代理商符合符号效应的多样化技能。我们制定了一种客观且相应的算法,该算法通过已知的抽象来通过内在动机来无监督学习各种技能。这些技能是通过符号前向模型共同学习的,该模型捕获了国家抽象中技能执行的影响。训练后,我们可以使用向前模型来利用符号动作的技能来进行长途计划,并随后使用学识渊博的连续行动控制技能执行计划。拟议的算法学习了技能和前瞻性模型,可用于解决复杂的任务,这些任务既需要连续控制和长效计划功能,却具有很高的成功率。它与其他平坦和分层的增强学习基线代理相比,并通过真正的机器人成功证明。
translated by 谷歌翻译
学习多样化的技能是机器人技术的主要挑战之一。为此,模仿学习方法取得了令人印象深刻的结果。这些方法需要明确标记的数据集或采用一致的技能执行,以使学习和积极控制单个行为,从而限制其适用性。在这项工作中,我们提出了一种合作的对抗方法,用于从未标记的数据集中获得可控技能的单一多功能策略,该数据集包含各种状态过渡模式,通过最大化其可区分性。此外,我们表明,通过在生成的对抗性模仿学习框架中利用无监督的技能发现,新颖而有用的技能随着成功的任务实现而出现。最后,在示威中编码的各种技能的忠实复制中,对获得的多功能策略进行了测试,并呈现了忠实的复制。
translated by 谷歌翻译