能源基础架构的数字转换实现了机器学习模型通常支持的新的,数据驱动的应用程序。但是,在现代数据驱动管道中的域特定数据转换,预处理和管理尚待解决。在本文中,我们对能够支持设计功能管理解决方案的通用数据模型进行了首次研究,这些解决方案是开发基于ML的能源应用中最重要的组成部分。我们首先提出了一种针对能源应用的数据模型的分类法,请说明该模型如何支持功能的设计及其后续的专用功能商店的管理。使用短期预测数据集,我们展示了设计更丰富的数据模型和工程性能的功能的好处。最后,我们基准了三个互补功能管理解决方案,包括适合时间序列的开源功能商店。
translated by 谷歌翻译
Energy consumption in buildings, both residential and commercial, accounts for approximately 40% of all energy usage in the U.S., and similar numbers are being reported from countries around the world. This significant amount of energy is used to maintain a comfortable, secure, and productive environment for the occupants. So, it is crucial that the energy consumption in buildings must be optimized, all the while maintaining satisfactory levels of occupant comfort, health, and safety. Recently, Machine Learning has been proven to be an invaluable tool in deriving important insights from data and optimizing various systems. In this work, we review the ways in which machine learning has been leveraged to make buildings smart and energy-efficient. For the convenience of readers, we provide a brief introduction of several machine learning paradigms and the components and functioning of each smart building system we cover. Finally, we discuss challenges faced while implementing machine learning algorithms in smart buildings and provide future avenues for research at the intersection of smart buildings and machine learning.
translated by 谷歌翻译
Efficient energy consumption is crucial for achieving sustainable energy goals in the era of climate change and grid modernization. Thus, it is vital to understand how energy is consumed at finer resolutions such as household in order to plan demand-response events or analyze the impacts of weather, electricity prices, electric vehicles, solar, and occupancy schedules on energy consumption. However, availability and access to detailed energy-use data, which would enable detailed studies, has been rare. In this paper, we release a unique, large-scale, synthetic, residential energy-use dataset for the residential sector across the contiguous United States covering millions of households. The data comprise of hourly energy use profiles for synthetic households, disaggregated into Thermostatically Controlled Loads (TCL) and appliance use. The underlying framework is constructed using a bottom-up approach. Diverse open-source surveys and first principles models are used for end-use modeling. Extensive validation of the synthetic dataset has been conducted through comparisons with reported energy-use data. We present a detailed, open, high-resolution, residential energy-use dataset for the United States.
translated by 谷歌翻译
在由家用电器,电动汽车和太阳能电池板等各种设备组成的分散家庭能源系统中,最终用户可以更深入地研究该系统的细节,并进一步实现能源可持续性,如果向它们提供了有关电能消耗的数据和设备粒度的生产。但是,该领域中的许多数据库都是从其他域中孤立的,包括仅与能源有关的信息。这可能会导致每个设备能源使用的信息损失(\ textit {例如{例如}天气)。同时,许多这些数据集已在计算建模技术(例如机器学习模型)中广泛使用。尽管这种计算方法仅通过仅专注于数据集的局部视图来实现极高的准确性和性能,但不能保证模型可靠性,因为当考虑到信息遗漏时,此类模型非常容易受到数据输入波动的影响。本文通过在家庭能源系统的基础上检查语义Web方法来解决智能能源系统领域的数据隔离问题。我们提供了一种基于本体的方法,用于在系统中的设备级分辨率下管理分散数据。结果,与每个设备相关的数据的范围可以在整个网络中以可互操作的方式轻松扩展,并且只要根据W3C标准组织数据,就可以从网络中获得其他信息,例如天气。 。
translated by 谷歌翻译
Algorithms that involve both forecasting and optimization are at the core of solutions to many difficult real-world problems, such as in supply chains (inventory optimization), traffic, and in the transition towards carbon-free energy generation in battery/load/production scheduling in sustainable energy systems. Typically, in these scenarios we want to solve an optimization problem that depends on unknown future values, which therefore need to be forecast. As both forecasting and optimization are difficult problems in their own right, relatively few research has been done in this area. This paper presents the findings of the ``IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling," held in 2021. We present a comparison and evaluation of the seven highest-ranked solutions in the competition, to provide researchers with a benchmark problem and to establish the state of the art for this benchmark, with the aim to foster and facilitate research in this area. The competition used data from the Monash Microgrid, as well as weather data and energy market data. It then focused on two main challenges: forecasting renewable energy production and demand, and obtaining an optimal schedule for the activities (lectures) and on-site batteries that lead to the lowest cost of energy. The most accurate forecasts were obtained by gradient-boosted tree and random forest models, and optimization was mostly performed using mixed integer linear and quadratic programming. The winning method predicted different scenarios and optimized over all scenarios jointly using a sample average approximation method.
translated by 谷歌翻译
A well-performing prediction model is vital for a recommendation system suggesting actions for energy-efficient consumer behavior. However, reliable and accurate predictions depend on informative features and a suitable model design to perform well and robustly across different households and appliances. Moreover, customers' unjustifiably high expectations of accurate predictions may discourage them from using the system in the long term. In this paper, we design a three-step forecasting framework to assess predictability, engineering features, and deep learning architectures to forecast 24 hourly load values. First, our predictability analysis provides a tool for expectation management to cushion customers' anticipations. Second, we design several new weather-, time- and appliance-related parameters for the modeling procedure and test their contribution to the model's prediction performance. Third, we examine six deep learning techniques and compare them to tree- and support vector regression benchmarks. We develop a robust and accurate model for the appliance-level load prediction based on four datasets from four different regions (US, UK, Austria, and Canada) with an equal set of appliances. The empirical results show that cyclical encoding of time features and weather indicators alongside a long-short term memory (LSTM) model offer the optimal performance.
translated by 谷歌翻译
如今,由于最近在人工智能(AI)和机器学习(ML)中的近期突破,因此,智能系统和服务越来越受欢迎。然而,机器学习不仅满足软件工程,不仅具有有希望的潜力,而且还具有一些固有的挑战。尽管最近的一些研究努力,但我们仍然没有明确了解开发基于ML的申请和当前行业实践的挑战。此外,目前尚不清楚软件工程研究人员应将其努力集中起来,以更好地支持ML应用程序开发人员。在本文中,我们报告了一个旨在了解ML应用程序开发的挑战和最佳实践的调查。我们合成从80名从业者(以不同的技能,经验和应用领域)获得的结果为17个调查结果;概述ML应用程序开发的挑战和最佳实践。参与基于ML的软件系统发展的从业者可以利用总结最佳实践来提高其系统的质量。我们希望报告的挑战将通知研究界有关需要调查的主题,以改善工程过程和基于ML的申请的质量。
translated by 谷歌翻译
非侵入性负载监控(NILM)是将总功率消耗分为单个子组件的任务。多年来,已经合并了信号处理和机器学习算法以实现这一目标。关于最先进的方法,进行了许多出版物和广泛的研究工作,以涉及最先进的方法。科学界最初使用机器学习工具的尼尔姆问题制定和描述的最初兴趣已经转变为更实用的尼尔姆。如今,我们正处于成熟的尼尔姆时期,在现实生活中的应用程序方案中尝试使用尼尔姆。因此,算法的复杂性,可转移性,可靠性,实用性和普遍的信任度是主要的关注问题。这篇评论缩小了早期未成熟的尼尔姆时代与成熟的差距。特别是,本文仅对住宅电器的尼尔姆方法提供了全面的文献综述。本文分析,总结并介绍了大量最近发表的学术文章的结果。此外,本文讨论了这些方法的亮点,并介绍了研究人员应考虑的研究困境,以应用尼尔姆方法。最后,我们表明需要将传统分类模型转移到一个实用且值得信赖的框架中。
translated by 谷歌翻译
A digital twin is defined as a virtual representation of a physical asset enabled through data and simulators for real-time prediction, optimization, monitoring, controlling, and improved decision-making. Unfortunately, the term remains vague and says little about its capability. Recently, the concept of capability level has been introduced to address this issue. Based on its capability, the concept states that a digital twin can be categorized on a scale from zero to five, referred to as standalone, descriptive, diagnostic, predictive, prescriptive, and autonomous, respectively. The current work introduces the concept in the context of the built environment. It demonstrates the concept by using a modern house as a use case. The house is equipped with an array of sensors that collect timeseries data regarding the internal state of the house. Together with physics-based and data-driven models, these data are used to develop digital twins at different capability levels demonstrated in virtual reality. The work, in addition to presenting a blueprint for developing digital twins, also provided future research directions to enhance the technology.
translated by 谷歌翻译
通过提供前所未有的计算资源访问,云计算能够在机器学习等技术中快速增长,其计算需求产生了高能源成本和相应的碳足迹。结果,最近的奖学金呼吁更好地估计AI的温室气体影响:当今的数据科学家无法轻松或可靠地访问该信息的测量,从而排除了可行策略的发展。向用户提供有关软件碳强度的信息的云提供商是一种基本的垫脚石,以最大程度地减少排放。在本文中,我们提供了一个测量软件碳强度的框架,并建议通过使用每个能量单元使用基于位置和特定时间的边际排放数据来测量运行碳排放。我们为一组自然语言处理和计算机视觉的现代模型提供了操作软件强度的测量,以及各种模型尺寸,包括预处理61亿个参数语言模型。然后,我们评估了一套用于减少Microsoft Azure Cloud Compute平台排放的方法套件:使用不同地理区域中的云实例,在一天中的不同时间使用云实例,并在边际碳强度高于某个阈值时动态暂停云实例。我们证实了先前的结果,即数据中心的地理区域在给定云实例的碳强度中起着重要作用,并发现选择合适的区域可能具有最大的运营排放减少影响。我们还表明,一天中的时间对操作软件碳强度有显着影响。最后,我们最终提出了有关机器学习从业人员如何使用软件碳强度信息来减少环境影响的建议。
translated by 谷歌翻译
建筑物和校园的电力负荷预测随着分布式能源(DERs)的渗透而越来越重要。高效的操作和调度DER需要合理准确的未来能耗预测,以便进行现场发电和存储资产的近实时优化派遣。电力公用事业公司传统上对跨越地理区域的负载口袋进行了负荷预测,因此预测不是建筑物和校园运营商的常见做法。鉴于电网交互式高效建筑域中的研究和原型趋势不断发展,超出简单算法预测精度的特点对于确定智能建筑算法的真正效用很重要。其他特性包括部署架构的整体设计和预测系统的运行效率。在这项工作中,我们介绍了一个基于深度学习的负载预测系统,将来预测1小时的时间间隔18小时。我们还讨论了与此类系统的实时部署相关的挑战,以及通过在国家可再生能源实验室智能校园计划中开发的全功能预测系统提供的研究机会。
translated by 谷歌翻译
随着机器学习(ML)模型和系统在不同行业的高赌注环境中的增加,保证了部署后的模型的性能变得至关重要。生产中的监测模型是确保其持续性能和可靠性的关键方面。我们展示了Amazon Sagemaker Model Monitor,这是一个完全托管的服务,不断监控亚马逊Sagemaker上托管的机器学习模型的质量。我们的系统实时地自动检测模型中的数据,概念,偏置和特征归因漂移,并提供警报,以便模型所有者可以采取纠正措施,从而保持高质量模型。我们描述了从客户,系统设计和架构获得的关键要求以及用于检测不同类型漂移的方法。此外,我们提供量化评估,然后使用案例,见解和从超过1.5年的生产部署中汲取的经验教训。
translated by 谷歌翻译
This paper is a technical overview of DeepMind and Google's recent work on reinforcement learning for controlling commercial cooling systems. Building on expertise that began with cooling Google's data centers more efficiently, we recently conducted live experiments on two real-world facilities in partnership with Trane Technologies, a building management system provider. These live experiments had a variety of challenges in areas such as evaluation, learning from offline data, and constraint satisfaction. Our paper describes these challenges in the hope that awareness of them will benefit future applied RL work. We also describe the way we adapted our RL system to deal with these challenges, resulting in energy savings of approximately 9% and 13% respectively at the two live experiment sites.
translated by 谷歌翻译
模型用于软件工程(SE)和人工智能(AI)。 SE模型可以在不同抽象层次的架构中指定架构,并从早期概念化和设计,从软件开发生命周期的各个阶段解决不同的问题,以验证,实施,测试和演化。然而,AI模型可以提供智能能力,例如预测和决策支持。例如,在机器学习(ml)中,这是目前是AI的最受欢迎的子学科,数学模型可能会在观察到的数据中学习有用的模式,并且可以成为能够进行预测。这项工作的目标是通过将在所述社区的模型聚集在一起并提出一种需要ML的智能系统的模型驱动软件开发的整体方法来创建协同作用。我们说明了软件模型如何能够以无缝方式创建和处理ML模型。主要焦点位于事物互联网(物联网)的领域,其中ML和模型驱动的SE都发挥着关键作用。在需要采取有针对性架构的网络物理系统的系统视角下,SE和ML子系统的集成设计环境将最能支持所得系统实现的优化和整体效率。特别是,我们实现了基于INTOMML的CL-Quadrat的所提出的方法,并使用来自物联网域的案例研究以及经验用户评估来验证它。它归还所提出的方法不仅是可行的,而且还可能有助于与IOT连接的智能网络物理系统(CPS)的软件开发的性能飞跃,以及增强的使用者的用户体验建议的建模解决方案。
translated by 谷歌翻译
近年来,随着传感器和智能设备的广泛传播,物联网(IoT)系统的数据生成速度已大大增加。在物联网系统中,必须经常处理,转换和分析大量数据,以实现各种物联网服务和功能。机器学习(ML)方法已显示出其物联网数据分析的能力。但是,将ML模型应用于物联网数据分析任务仍然面临许多困难和挑战,特别是有效的模型选择,设计/调整和更新,这给经验丰富的数据科学家带来了巨大的需求。此外,物联网数据的动态性质可能引入概念漂移问题,从而导致模型性能降解。为了减少人类的努力,自动化机器学习(AUTOML)已成为一个流行的领域,旨在自动选择,构建,调整和更新机器学习模型,以在指定任务上实现最佳性能。在本文中,我们对Automl区域中模型选择,调整和更新过程中的现有方法进行了审查,以识别和总结将ML算法应用于IoT数据分析的每个步骤的最佳解决方案。为了证明我们的发现并帮助工业用户和研究人员更好地实施汽车方法,在这项工作中提出了将汽车应用于IoT异常检测问题的案例研究。最后,我们讨论并分类了该领域的挑战和研究方向。
translated by 谷歌翻译
自动化机器学习(Automl)努力自动配置机器学习算法及其组合的整体(软件)解决方案 - 机器学习管道 - 针对手头的学习任务(数据集)量身定制。在过去十年中,Automl已成为具有数百个贡献的热门研究课题。虽然Automl提供了许多前景,但也称它也是相当资源密集的,这是其主要批评的主要观点之一。高资源消耗的主要原因是许多方法依赖于许多ML管道的(昂贵)评估,同时寻找良好的候选者。由于使用许多数据集和方法进行了大规模实验,因此在Automl方法研究的背景下放大了这个问题,每个数据都是用几种重复来排除随机效应的几个重复的实验。本文阐述了最近的绿色AI的精神,是为了提高对问题的自动化研究人员的意识,并详细阐述可能的补救措施。为此,我们确定了四类行动,社区可能采取更加可持续的自动化计划,即接近设计,基准,研究激励和透明度。
translated by 谷歌翻译
机器学习传感器代表了嵌入式机器学习应用程序未来的范式转移。当前的嵌入式机器学习(ML)实例化遭受了复杂的整合,缺乏模块化以及数据流动的隐私和安全问题。本文提出了一个以数据为中心的范式,用于将传感器智能嵌入边缘设备上,以应对这些挑战。我们对“传感器2.0”的愿景需要将传感器输入数据和ML处理从硬件级别隔离到更广泛的系统,并提供一个薄的界面,以模拟传统传感器的功能。这种分离导致模块化且易于使用的ML传感器设备。我们讨论了将ML处理构建到嵌入式系统上控制微处理器的软件堆栈中的标准方法所带来的挑战,以及ML传感器的模块化如何减轻这些问题。 ML传感器提高了隐私和准确性,同时使系统构建者更容易将ML集成到其产品中,以简单的组件。我们提供了预期的ML传感器和说明性数据表的例子,以表现出来,并希望这将建立对话使我们朝着传感器2.0迈进。
translated by 谷歌翻译
传统的数据湖泊通过启用时间旅行,运行SQL查询,使用酸性交易摄入数据以及可视化PBABYTE尺度数据集在云存储中,为分析工作负载提供了关键的数据基础架构。它们使组织能够分解数据孤岛,解锁数据驱动的决策,提高运营效率并降低成本。但是,随着深度学习接管常见的分析工作流程,传统数据湖泊对诸如自然语言处理(NLP),音频处理,计算机视觉和涉及非尾巴数据集的应用程序的有用程度降低。本文介绍了Deep Lake,这是一个开源湖泊,用于在Activeloop开发的深度学习应用程序。 Deep Lake保持了一项关键区别的香草数据湖的好处:它以张量的形式存储复杂数据,例如图像,视频,注释以及表格数据,并将数据迅速流式传输到网络上(a )张量查询语言,(b)浏览器可视化引擎或(c)不牺牲GPU利用率的深度学习框架。可以从Pytorch,Tensorflow,Jax,与许多MLOPS工具集成在一起的数据集。
translated by 谷歌翻译
Explainable Artificial Intelligence (XAI) is transforming the field of Artificial Intelligence (AI) by enhancing the trust of end-users in machines. As the number of connected devices keeps on growing, the Internet of Things (IoT) market needs to be trustworthy for the end-users. However, existing literature still lacks a systematic and comprehensive survey work on the use of XAI for IoT. To bridge this lacking, in this paper, we address the XAI frameworks with a focus on their characteristics and support for IoT. We illustrate the widely-used XAI services for IoT applications, such as security enhancement, Internet of Medical Things (IoMT), Industrial IoT (IIoT), and Internet of City Things (IoCT). We also suggest the implementation choice of XAI models over IoT systems in these applications with appropriate examples and summarize the key inferences for future works. Moreover, we present the cutting-edge development in edge XAI structures and the support of sixth-generation (6G) communication services for IoT applications, along with key inferences. In a nutshell, this paper constitutes the first holistic compilation on the development of XAI-based frameworks tailored for the demands of future IoT use cases.
translated by 谷歌翻译
Video, as a key driver in the global explosion of digital information, can create tremendous benefits for human society. Governments and enterprises are deploying innumerable cameras for a variety of applications, e.g., law enforcement, emergency management, traffic control, and security surveillance, all facilitated by video analytics (VA). This trend is spurred by the rapid advancement of deep learning (DL), which enables more precise models for object classification, detection, and tracking. Meanwhile, with the proliferation of Internet-connected devices, massive amounts of data are generated daily, overwhelming the cloud. Edge computing, an emerging paradigm that moves workloads and services from the network core to the network edge, has been widely recognized as a promising solution. The resulting new intersection, edge video analytics (EVA), begins to attract widespread attention. Nevertheless, only a few loosely-related surveys exist on this topic. A dedicated venue for collecting and summarizing the latest advances of EVA is highly desired by the community. Besides, the basic concepts of EVA (e.g., definition, architectures, etc.) are ambiguous and neglected by these surveys due to the rapid development of this domain. A thorough clarification is needed to facilitate a consensus on these concepts. To fill in these gaps, we conduct a comprehensive survey of the recent efforts on EVA. In this paper, we first review the fundamentals of edge computing, followed by an overview of VA. The EVA system and its enabling techniques are discussed next. In addition, we introduce prevalent frameworks and datasets to aid future researchers in the development of EVA systems. Finally, we discuss existing challenges and foresee future research directions. We believe this survey will help readers comprehend the relationship between VA and edge computing, and spark new ideas on EVA.
translated by 谷歌翻译