物理模拟器在安全,不受约束的环境中方便学习加强学习政策表现出了巨大的希望。但是,由于现实差距,将获得的知识转移到现实世界可能会具有挑战性。为此,最近已经提出了几种方法来自动调整具有后验分布的实际数据,以在训练时与域随机化一起使用。这些方法已被证明在不同的设置和假设下适用于各种机器人任务。然而,现有文献缺乏对转移性能和实际数据效率的现有自适应域随机方法的详尽比较。在这项工作中,我们为离线和在线方法(Simopt,Bayrn,Droid,Dropo)提供了一个开放的基准,以阐明最适合每个设置和手头的任务。我们发现,在线方法受到下一次迭代的当前学会策略的质量受到限制,而离线方法有时可能会在使用开环命令中模拟中重播轨迹时失败。所使用的代码将在https://github.com/gabrieletiboni/adr-benchmark上发布。
translated by 谷歌翻译
深度学习的兴起导致机器人研究中的范式转变,有利于需要大量数据的方法。在物理平台上生成这样的数据集是昂贵的。因此,最先进的方法在模拟中学习,其中数据生成快速以及廉价并随后将知识转移到真实机器人(SIM-to-Real)。尽管变得越来越真实,但所有模拟器都是基于模型的施工,因此不可避免地不完善。这提出了如何修改模拟器以促进学习机器人控制政策的问题,并克服模拟与现实之间的不匹配,通常称为“现实差距”。我们对机器人学的SIM-Teal研究提供了全面的审查,专注于名为“域随机化”的技术,这是一种从随机仿真学习的方法。
translated by 谷歌翻译
本文详细介绍了我们对2021年真正机器人挑战的第一阶段提交的提交;三指机器人必须沿指定目标轨迹携带立方体的挑战。为了解决第1阶段,我们使用一种纯净的增强学习方法,该方法需要对机器人系统或机器人抓握的最少专家知识。与事后的经验重播一起采用了稀疏,基于目标的奖励,以教导控制立方体将立方体移至目标的X和Y坐标。同时,采用了基于密集的距离奖励来教授将立方体提升到目标的Z坐标(高度组成部分)的政策。该策略在将域随机化的模拟中进行培训,然后再转移到真实的机器人进行评估。尽管此次转移后的性能往往会恶化,但我们的最佳政策可以通过有效的捏合掌握能够成功地沿目标轨迹提升真正的立方体。我们的方法表现优于所有其他提交,包括那些利用更传统的机器人控制技术的提交,并且是第一个解决这一挑战的纯学习方法。
translated by 谷歌翻译
有效的探索是深度强化学习的关键挑战。几种方法,例如行为先验,能够利用离线数据,以便在复杂任务上有效加速加强学习。但是,如果手动的任务与所证明的任务过度偏离,则此类方法的有效性是有限的。在我们的工作中,我们建议从离线数据中学习功能,这些功能由更加多样化的任务共享,例如动作与定向之间的相关性。因此,我们介绍了无国有先验,该先验直接在显示的轨迹中直接建模时间一致性,并且即使在对简单任务收集的数据进行培训时,也能够在复杂的任务中推动探索。此外,我们通过从政策和行动之前的概率混合物中动态采样动作,引入了一种新颖的集成方案,用于非政策强化学习中的动作研究。我们将我们的方法与强大的基线相提并论,并提供了经验证据,表明它可以在稀疏奖励环境下的长途持续控制任务中加速加强学习。
translated by 谷歌翻译
从意外的外部扰动中恢复的能力是双模型运动的基本机动技能。有效的答复包括不仅可以恢复平衡并保持稳定性的能力,而且在平衡恢复物质不可行时,也可以保证安全的方式。对于与双式运动有关的机器人,例如人形机器人和辅助机器人设备,可帮助人类行走,设计能够提供这种稳定性和安全性的控制器可以防止机器人损坏或防止伤害相关的医疗费用。这是一个具有挑战性的任务,因为它涉及用触点产生高维,非线性和致动系统的高动态运动。尽管使用基于模型和优化方法的前进方面,但诸如广泛领域知识的要求,诸如较大的计算时间和有限的动态变化的鲁棒性仍然会使这个打开问题。在本文中,为了解决这些问题,我们开发基于学习的算法,能够为两种不同的机器人合成推送恢复控制政策:人形机器人和有助于双模型运动的辅助机器人设备。我们的工作可以分为两个密切相关的指示:1)学习人形机器人的安全下降和预防策略,2)使用机器人辅助装置学习人类的预防策略。为实现这一目标,我们介绍了一套深度加强学习(DRL)算法,以学习使用这些机器人时提高安全性的控制策略。
translated by 谷歌翻译
在没有高保真模拟环境的情况下,学习有效的加强学习(RL)政策可以解决现实世界中的复杂任务。在大多数情况下,我们只有具有简化动力学的不完善的模拟器,这不可避免地导致RL策略学习中的SIM到巨大差距。最近出现的离线RL领域为直接从预先收集的历史数据中学习政策提供了另一种可能性。但是,为了达到合理的性能,现有的离线RL算法需要不切实际的离线数据,并具有足够的州行动空间覆盖范围进行培训。这提出了一个新问题:是否有可能通过在线RL中的不完美模拟器中的离线RL中的有限数据中的学习结合到无限制的探索,以解决两种方法的缺点?在这项研究中,我们提出了动态感知的混合离线和对线增强学习(H2O)框架,以为这个问题提供肯定的答案。 H2O引入了动态感知的政策评估方案,该方案可以自适应地惩罚Q函数在模拟的状态行动对上具有较大的动态差距,同时也允许从固定的现实世界数据集中学习。通过广泛的模拟和现实世界任务以及理论分析,我们证明了H2O与其他跨域在线和离线RL算法相对于其他跨域的表现。 H2O提供了全新的脱机脱机RL范式,该范式可能会阐明未来的RL算法设计,以解决实用的现实世界任务。
translated by 谷歌翻译
机器人和与世界相互作用或互动的机器人和智能系统越来越多地被用来自动化各种任务。这些系统完成这些任务的能力取决于构成机器人物理及其传感器物体的机械和电气部件,例如,感知算法感知环境,并计划和控制算法以生产和控制算法来生产和控制算法有意义的行动。因此,通常有必要在设计具体系统时考虑这些组件之间的相互作用。本文探讨了以端到端方式对机器人系统进行任务驱动的合作的工作,同时使用推理或控制算法直接优化了系统的物理组件以进行任务性能。我们首先考虑直接优化基于信标的本地化系统以达到本地化准确性的问题。设计这样的系统涉及将信标放置在整个环境中,并通过传感器读数推断位置。在我们的工作中,我们开发了一种深度学习方法,以直接优化信标的放置和位置推断以达到本地化精度。然后,我们将注意力转移到了由任务驱动的机器人及其控制器优化的相关问题上。在我们的工作中,我们首先提出基于多任务增强学习的数据有效算法。我们的方法通过利用能够在物理设计的空间上概括设计条件的控制器,有效地直接优化了物理设计和控制参数,以直接优化任务性能。然后,我们对此进行跟进,以允许对离散形态参数(例如四肢的数字和配置)进行优化。最后,我们通过探索优化的软机器人的制造和部署来得出结论。
translated by 谷歌翻译
值得信赖的强化学习算法应有能力解决挑战性的现实问题,包括{Robustly}处理不确定性,满足{安全}的限制以避免灾难性的失败,以及在部署过程中{prencepentiming}以避免灾难性的失败}。这项研究旨在概述这些可信赖的强化学习的主要观点,即考虑其在鲁棒性,安全性和概括性上的内在脆弱性。特别是,我们给出严格的表述,对相应的方法进行分类,并讨论每个观点的基准。此外,我们提供了一个前景部分,以刺激有希望的未来方向,并简要讨论考虑人类反馈的外部漏洞。我们希望这项调查可以在统一的框架中将单独的研究汇合在一起,并促进强化学习的可信度。
translated by 谷歌翻译
深入学习的强化学习(RL)的结合导致了一系列令人印象深刻的壮举,许多相信(深)RL提供了一般能力的代理。然而,RL代理商的成功往往对培训过程中的设计选择非常敏感,这可能需要繁琐和易于易于的手动调整。这使得利用RL对新问题充满挑战,同时也限制了其全部潜力。在许多其他机器学习领域,AutomL已经示出了可以自动化这样的设计选择,并且在应用于RL时也会产生有希望的初始结果。然而,自动化强化学习(AutorL)不仅涉及Automl的标准应用,而且还包括RL独特的额外挑战,其自然地产生了不同的方法。因此,Autorl已成为RL中的一个重要研究领域,提供来自RNA设计的各种应用中的承诺,以便玩游戏等游戏。鉴于RL中考虑的方法和环境的多样性,在不同的子领域进行了大部分研究,从Meta学习到进化。在这项调查中,我们寻求统一自动的领域,我们提供常见的分类法,详细讨论每个区域并对研究人员来说是一个兴趣的开放问题。
translated by 谷歌翻译
我们研究了复杂几何物体的机器人堆叠问题。我们提出了一个挑战和多样化的这些物体,这些物体被精心设计,以便要求超出简单的“拾取”解决方案之外的策略。我们的方法是加强学习(RL)方法与基于视觉的互动政策蒸馏和模拟到现实转移相结合。我们的学习政策可以有效地处理现实世界中的多个对象组合,并展示各种各样的堆叠技能。在一个大型的实验研究中,我们调查在模拟中学习这种基于视觉的基于视觉的代理的选择,以及对真实机器人的最佳转移产生了什么影响。然后,我们利用这些策略收集的数据并通过离线RL改善它们。我们工作的视频和博客文章作为补充材料提供。
translated by 谷歌翻译
While reinforcement learning (RL) has become a more popular approach for robotics, designing sufficiently informative reward functions for complex tasks has proven to be extremely difficult due their inability to capture human intent and policy exploitation. Preference based RL algorithms seek to overcome these challenges by directly learning reward functions from human feedback. Unfortunately, prior work either requires an unreasonable number of queries implausible for any human to answer or overly restricts the class of reward functions to guarantee the elicitation of the most informative queries, resulting in models that are insufficiently expressive for realistic robotics tasks. Contrary to most works that focus on query selection to \emph{minimize} the amount of data required for learning reward functions, we take an opposite approach: \emph{expanding} the pool of available data by viewing human-in-the-loop RL through the more flexible lens of multi-task learning. Motivated by the success of meta-learning, we pre-train preference models on prior task data and quickly adapt them for new tasks using only a handful of queries. Empirically, we reduce the amount of online feedback needed to train manipulation policies in Meta-World by 20$\times$, and demonstrate the effectiveness of our method on a real Franka Panda Robot. Moreover, this reduction in query-complexity allows us to train robot policies from actual human users. Videos of our results and code can be found at https://sites.google.com/view/few-shot-preference-rl/home.
translated by 谷歌翻译
由于配置空间的高维度以及受各种材料特性影响的动力学的复杂性,布料操纵是一项具有挑战性的任务。复杂动力学的效果甚至在动态折叠中更为明显,例如,当平方板通过单个操纵器将一块织物折叠为两种时。为了说明复杂性和不确定性,使用例如通常需要视觉。但是,构建动态布折叠的视觉反馈政策是一个开放的问题。在本文中,我们提出了一种解决方案,该解决方案可以使用强化学习(RL)学习模拟政策,并将学识渊博的政策直接转移到现实世界中。此外,要学习一种操纵多种材料的单一策略,我们将模拟中的材料属性随机化。我们评估了现实世界实验中视觉反馈和材料随机化的贡献。实验结果表明,所提出的解决方案可以使用现实世界中的动态操作成功地折叠不同的面料类型。代码,数据和视频可从https://sites.google.com/view/dynamic-cloth-folding获得
translated by 谷歌翻译
强化学习(RL)通过与环境相互作用的试验过程解决顺序决策问题。尽管RL在玩复杂的视频游戏方面取得了巨大的成功,但在现实世界中,犯错误总是不希望的。为了提高样本效率并从而降低错误,据信基于模型的增强学习(MBRL)是一个有前途的方向,它建立了环境模型,在该模型中可以进行反复试验,而无需实际成本。在这项调查中,我们对MBRL进行了审查,重点是Deep RL的最新进展。对于非壮观环境,学到的环境模型与真实环境之间始终存在概括性错误。因此,非常重要的是分析环境模型中的政策培训与实际环境中的差异,这反过来又指导了更好的模型学习,模型使用和政策培训的算法设计。此外,我们还讨论了其他形式的RL,包括离线RL,目标条件RL,多代理RL和Meta-RL的最新进展。此外,我们讨论了MBRL在现实世界任务中的适用性和优势。最后,我们通过讨论MBRL未来发展的前景来结束这项调查。我们认为,MBRL在被忽略的现实应用程序中具有巨大的潜力和优势,我们希望这项调查能够吸引更多关于MBRL的研究。
translated by 谷歌翻译
元强化学习(RL)方法可以使用比标准RL少的数据级的元培训策略,但元培训本身既昂贵又耗时。如果我们可以在离线数据上进行元训练,那么我们可以重复使用相同的静态数据集,该数据集将一次标记为不同任务的奖励,以在元测试时间适应各种新任务的元训练策略。尽管此功能将使Meta-RL成为现实使用的实用工具,但离线META-RL提出了除在线META-RL或标准离线RL设置之外的其他挑战。 Meta-RL学习了一种探索策略,该策略收集了用于适应的数据,并元培训策略迅速适应了新任务的数据。由于该策略是在固定的离线数据集上进行了元训练的,因此当适应学识渊博的勘探策略收集的数据时,它可能表现得不可预测,这与离线数据有系统地不同,从而导致分布变化。我们提出了一种混合脱机元元素算法,该算法使用带有奖励的脱机数据来进行自适应策略,然后收集其他无监督的在线数据,而无需任何奖励标签来桥接这一分配变化。通过不需要在线收集的奖励标签,此数据可以便宜得多。我们将我们的方法比较了在模拟机器人的运动和操纵任务上进行离线元rl的先前工作,并发现使用其他无监督的在线数据收集可以显着提高元训练政策的自适应能力,从而匹配完全在线的表现。在一系列具有挑战性的域上,需要对新任务进行概括。
translated by 谷歌翻译
强化学习(RL)算法有望为机器人系统实现自主技能获取。但是,实际上,现实世界中的机器人RL通常需要耗时的数据收集和频繁的人类干预来重置环境。此外,当部署超出知识的设置超出其学习的设置时,使用RL学到的机器人政策通常会失败。在这项工作中,我们研究了如何通过从先前看到的任务中收集的各种离线数据集的有效利用来应对这些挑战。当面对一项新任务时,我们的系统会适应以前学习的技能,以快速学习执行新任务并将环境返回到初始状态,从而有效地执行自己的环境重置。我们的经验结果表明,将先前的数据纳入机器人增强学习中可以实现自主学习,从而大大提高了学习的样本效率,并可以更好地概括。
translated by 谷歌翻译
Offline reinforcement learning (RL) refers to the problem of learning policies entirely from a large batch of previously collected data. This problem setting offers the promise of utilizing such datasets to acquire policies without any costly or dangerous active exploration. However, it is also challenging, due to the distributional shift between the offline training data and those states visited by the learned policy. Despite significant recent progress, the most successful prior methods are model-free and constrain the policy to the support of data, precluding generalization to unseen states. In this paper, we first observe that an existing model-based RL algorithm already produces significant gains in the offline setting compared to model-free approaches. However, standard model-based RL methods, designed for the online setting, do not provide an explicit mechanism to avoid the offline setting's distributional shift issue. Instead, we propose to modify the existing model-based RL methods by applying them with rewards artificially penalized by the uncertainty of the dynamics. We theoretically show that the algorithm maximizes a lower bound of the policy's return under the true MDP. We also characterize the trade-off between the gain and risk of leaving the support of the batch data. Our algorithm, Model-based Offline Policy Optimization (MOPO), outperforms standard model-based RL algorithms and prior state-of-the-art model-free offline RL algorithms on existing offline RL benchmarks and two challenging continuous control tasks that require generalizing from data collected for a different task. * equal contribution. † equal advising. Orders randomized.34th Conference on Neural Information Processing Systems (NeurIPS 2020),
translated by 谷歌翻译
离线强化学习在利用大型预采用的数据集进行政策学习方面表现出了巨大的希望,使代理商可以放弃经常廉价的在线数据收集。但是,迄今为止,离线强化学习的探索相对较小,并且缺乏对剩余挑战所在的何处的了解。在本文中,我们试图建立简单的基线以在视觉域中连续控制。我们表明,对两个基于最先进的在线增强学习算法,Dreamerv2和DRQ-V2进行了简单的修改,足以超越事先工作并建立竞争性的基准。我们在现有的离线数据集中对这些算法进行了严格的评估,以及从视觉观察结果中进行离线强化学习的新测试台,更好地代表现实世界中离线增强学习问题中存在的数据分布,并开放我们的代码和数据以促进此方面的进度重要领域。最后,我们介绍并分析了来自视觉观察的离线RL所独有的几个关键Desiderata,包括视觉分散注意力和动态视觉上可识别的变化。
translated by 谷歌翻译
深度加强学习是一种从头开始学习机器人控制政策的有效工具。然而,这些方法对于巨大的需要训练数据来说是臭名昭着的,这对于真正的机器人来说是昂贵的。高度流行的替代方案是从模拟中学习,允许生成数据更快,更安全和更便宜。由于所有模拟器仅仅是现实的模型,因此模拟和实际数据之间存在不可避免的差异,通常称为“现实差距”。为了弥合这种差距,许多方法从模拟器的分发中学习一个策略。在本文中,我们建议将钢筋从随机物理模拟与政策蒸馏相结合。我们的算法称为蒸馏域随机化(DOTOR),蒸馏出所谓的教师政策,这些教师策略是最初被抽样的域的专家,以稍后部署的学生政策。这样,DODOR学习直接从模拟转移到现实的控制器,即,不需要来自目标域的数据。我们将DIDOR与三个基线进行比较三个SIM-SIM-SIM,以及两个SIM-to-Real实验。我们的研究结果表明,用DODOR训练的政策的目标域表现是en Par或比基线更好。此外,我们的方法既不会增加所需的内存容量,也不会有时间来计算一个动作,这可能是成功部署学习控制器的故障点。
translated by 谷歌翻译
深度强化学习(RL)导致了许多最近和开创性的进步。但是,这些进步通常以培训的基础体系结构的规模增加以及用于训练它们的RL算法的复杂性提高,而均以增加规模的成本。这些增长反过来又使研究人员更难迅速原型新想法或复制已发表的RL算法。为了解决这些问题,这项工作描述了ACME,这是一个用于构建新型RL算法的框架,这些框架是专门设计的,用于启用使用简单的模块化组件构建的代理,这些组件可以在各种执行范围内使用。尽管ACME的主要目标是为算法开发提供一个框架,但第二个目标是提供重要或最先进算法的简单参考实现。这些实现既是对我们的设计决策的验证,也是对RL研究中可重复性的重要贡献。在这项工作中,我们描述了ACME内部做出的主要设计决策,并提供了有关如何使用其组件来实施各种算法的进一步详细信息。我们的实验为许多常见和最先进的算法提供了基准,并显示了如何为更大且更复杂的环境扩展这些算法。这突出了ACME的主要优点之一,即它可用于实现大型,分布式的RL算法,这些算法可以以较大的尺度运行,同时仍保持该实现的固有可读性。这项工作提出了第二篇文章的版本,恰好与模块化的增加相吻合,对离线,模仿和从演示算法学习以及作为ACME的一部分实现的各种新代理。
translated by 谷歌翻译
安全是自主系统的关键组成部分,仍然是现实世界中要使用的基于学习的政策的挑战。特别是,由于不安全的行为,使用强化学习学习的政策通常无法推广到新的环境。在本文中,我们提出了SIM到LAB到实验室,以弥合现实差距,并提供概率保证的安全意见政策分配。为了提高安全性,我们采用双重政策设置,其中通过累积任务奖励对绩效政策进行培训,并通过根据汉密尔顿 - 雅各布(Hamilton-Jacobi)(HJ)达到可达性分析来培训备用(安全)政策。在SIM到LAB转移中,我们采用监督控制方案来掩盖探索过程中不安全的行动;在实验室到实验室的转移中,我们利用大约正确的(PAC) - 贝斯框架来提供有关在看不见环境中政策的预期性能和安全性的下限。此外,从HJ可达性分析继承,界限说明了每个环境中最坏情况安全性的期望。我们从经验上研究了两种类型的室内环境中的自我视频导航框架,具有不同程度的光真实性。我们还通过具有四足机器人的真实室内空间中的硬件实验来证明强大的概括性能。有关补充材料,请参见https://sites.google.com/princeton.edu/sim-to-lab-to-real。
translated by 谷歌翻译