Open Arms是一个新型的开源平台,该平台具有现实的人类机器人手和手臂硬件,并具有28个自由度(DOF),旨在扩展人形机器人抓握和操纵的能力和可访问性。敞开的武器框架包括开放的SDK和开发环境,仿真工具和应用程序开发工具,以构建和操作敞开的武器。本文描述了这些手控制,感应,机制,美学设计以及制造业及其现实世界的应用,并使用远程手工护理机器人进行了现实应用。从2015年到2022年,作者设计并确定了敞开的武器的制造作为低成本,高功能机器人手臂硬件和软件框架,以服务类人机器人的机器人应用以及对低成本假肢的紧急需求,作为一部分汉森机器人索菲亚机器人平台。使用消费产品制造的技术,我们着手定义模块化的低成本技术,以近似人类手的灵敏性和灵敏度。为了证明我们的手的敏捷性和控制,我们提出了一种生成握把残留的CNN(GGR-CNN)模型,该模型可以从实时速度(22ms)的各种对象的输入图像中生成强大的抗抑制剂。我们使用在标准的康奈尔(Cornell)握把数据集上使用模型体系结构实现了92.4%的最新准确性,该数据集包含各种各样的家庭对象。
translated by 谷歌翻译
我们提出了一个本体感受的远程操作系统,该系统使用反身握把算法来增强拾取任务的速度和稳健性。该系统由两个使用准直接驱动驱动的操纵器组成,以提供高度透明的力反馈。末端效应器具有双峰力传感器,可测量3轴力信息和2维接触位置。此信息用于防滑和重新磨碎反射。当用户与所需对象接触时,重新抓紧反射将抓地力的手指与对象上的抗肌点对齐,以最大程度地提高抓握稳定性。反射仅需150毫秒即可纠正用户选择的不准确的grasps,因此用户的运动仅受到Re-Grasp的执行的最小干扰。一旦建立了抗焦点接触,抗滑动反射将确保抓地力施加足够的正常力来防止物体从抓地力中滑出。本体感受器的操纵器和反射抓握的结合使用户可以高速完成远程操作的任务。
translated by 谷歌翻译
大物体的操纵和安全地在人类附近进行安全操作的能力是通用国内机器人助手的关键能力。我们介绍了一种柔软,触觉的人形的人形机器人的设计,并展示了用于处理大物体的全身丰富的接触操作策略。我们展示了我们的硬件设计理念,用于使用软触觉传感模块,包括:(i)低成本,抗缝,接触压力定位的武器, (ii)基于TRI软气泡传感器的爪子,用于最终效应器,(III)柔顺的力/几何传感器,用于粗糙几何感测表面/胸部。我们利用这些模块的机械智能和触觉感应,为全身抓握控制进行开发和展示运动原语。我们评估硬件在实现各种大型国内物体上实现不同优势的掌握。我们的结果表明,利用富含接触的操纵策略的柔软度和触觉感应的重要性,以及与世界的全身力量控制的互动前进的道路。
translated by 谷歌翻译
人类的生活是无价的。当需要完成危险或威胁生命的任务时,机器人平台可能是更换人类运营商的理想选择。我们在这项工作中重点关注的任务是爆炸性的手段。鉴于移动机器人在多种环境中运行时表现出强大的功能,机器人触觉有可能提供安全解决方案。但是,与人类的运作相比,在此阶段,自主权可能具有挑战性和风险。远程运行可能是完整的机器人自主权和人类存在之间的折衷方案。在本文中,我们提出了一种相对便宜的解决方案,可用于远程敏感和机器人远程操作,以使用腿部操纵器(即,腿部四足机器人的机器人和RGB-D传感)来协助爆炸的军械处置。我们提出了一种新型的系统集成,以解决四足动物全身控制的非平凡问题。我们的系统基于可穿戴的基于IMU的运动捕获系统,该系统用于远程操作和视觉触发性的VR耳机。我们在实验中验证了现实世界中的方法,用于需要全身机器人控制和视觉触发的机车操作任务。
translated by 谷歌翻译
Robotic teleoperation is a key technology for a wide variety of applications. It allows sending robots instead of humans in remote, possibly dangerous locations while still using the human brain with its enormous knowledge and creativity, especially for solving unexpected problems. A main challenge in teleoperation consists of providing enough feedback to the human operator for situation awareness and thus create full immersion, as well as offering the operator suitable control interfaces to achieve efficient and robust task fulfillment. We present a bimanual telemanipulation system consisting of an anthropomorphic avatar robot and an operator station providing force and haptic feedback to the human operator. The avatar arms are controlled in Cartesian space with a direct mapping of the operator movements. The measured forces and torques on the avatar side are haptically displayed to the operator. We developed a predictive avatar model for limit avoidance which runs on the operator side, ensuring low latency. The system was successfully evaluated during the ANA Avatar XPRIZE competition semifinals. In addition, we performed in lab experiments and carried out a small user study with mostly untrained operators.
translated by 谷歌翻译
Grasping is an incredible ability of animals using their arms and limbs in their daily life. The human hand is an especially astonishing multi-fingered tool for precise grasping, which helped humans to develop the modern world. The implementation of the human grasp to virtual reality and telerobotics is always interesting and challenging at the same time. In this work, authors surveyed, studied, and analyzed the human hand-grasping behavior for the possibilities of haptic grasping in the virtual and remote environment. This work is focused on the motion and force analysis of fingers in human hand grasping scenarios and the paper describes the transition of the human hand grasping towards a tripod haptic grasp model for effective interaction in virtual reality.
translated by 谷歌翻译
抓握是通过在一组触点上施加力和扭矩来挑选对象的过程。深度学习方法的最新进展允许在机器人对象抓地力方面快速进步。我们在过去十年中系统地调查了出版物,特别感兴趣使用最终效果姿势的所有6度自由度抓住对象。我们的综述发现了四种用于机器人抓钩的常见方法:基于抽样的方法,直接回归,强化学习和示例方法。此外,我们发现了围绕抓握的两种“支持方法”,这些方法使用深入学习来支持抓握过程,形状近似和负担能力。我们已经将本系统评论(85篇论文)中发现的出版物提炼为十个关键要点,我们认为对未来的机器人抓握和操纵研究至关重要。该调查的在线版本可从https://rhys-newbury.github.io/projects/6dof/获得
translated by 谷歌翻译
用机器人手操纵物体是一项复杂的任务。不仅需要协调手指,而且机器人最终效应器的姿势也需要协调。使用人类的运动演示是指导机器人行为的直观和数据效率的方式。我们提出了一个具有自动实施例映射的模块化框架,以将记录的人体运动转移到机器人系统中。在这项工作中,我们使用运动捕获来记录人类运动。我们在八项具有挑战性的任务上评估了我们的方法,其中机器人手需要掌握和操纵可变形或小且脆弱的物体。我们测试了模拟和实际机器人中的轨迹子集,并且整体成功率是一致的。
translated by 谷歌翻译
Teideration为人类运营商提供了一种方法,以引导机器人在完全自治挑战或需要直接人类干预的情况下引导机器人。它也可以是教授机器人的重要工具,以便稍后实现自主行为。协同机器人武器和虚拟现实(VR)设备的可用性增加了充足的机会,用于开发新颖的无电术方法。由于机器人武器通常与人的武器相比,因此实时地将人类动作映射到机器人并不琐碎。此外,人类操作员可以将机器人手臂转向奇点或其工作空间限制,这可能导致不希望的行为。这进一步强调了多个机器人的编排。在本文中,我们提出了一个针对多臂有效载荷操作的VR接口,其可以与实时输入运动密切匹配。允许用户操纵有效载荷,而不是将它们的动作映射到各个武器,我们能够同时引导多个协作臂。通过释放单一的自由度,并通过使用本地优化方法,我们可以提高每个ARM的可操纵性指数,这反过来让我们避免运动奇点和工作空间限制。我们将我们的方法应用于预定义的轨迹以及不同机器人臂上的实时遥通,并在终端效应器位置误差和相关联合运动指标方面进行比较。
translated by 谷歌翻译
现代的机器人操纵系统缺乏人类的操纵技巧,部分原因是它们依靠围绕视觉数据的关闭反馈循环,这会降低系统的带宽和速度。通过开发依赖于高带宽力,接触和接近数据的自主握力反射,可以提高整体系统速度和鲁棒性,同时减少对视力数据的依赖。我们正在开发一个围绕低渗透的高速手臂建造的新系统,该系统用敏捷的手指结合了一个高级轨迹计划器,以小于1 Hz的速度运行,低级自主反射控制器的运行量超过300 Hz。我们通过将成功的基线控制器和反射握把控制器的变化的成功抓Grasps的体积和反射系统的体积进行比较,从而表征了反射系统,发现我们的控制器将成功的掌握率与基线相比扩大了55%。我们还使用简单的基于视觉的计划者在自主杂波清除任务中部署了反身抓握控制器,在清除100多个项目的同时,达到了超过90%的成功率。
translated by 谷歌翻译
Robot developers develop various types of robots for satisfying users' various demands. Users' demands are related to their backgrounds and robots suitable for users may vary. If a certain developer would offer a robot that is different from the usual to a user, the robot-specific software has to be changed. On the other hand, robot-software developers would like to reuse their developed software as much as possible to reduce their efforts. We propose the system design considering hardware-level reusability. For this purpose, we begin with the learning-from-observation framework. This framework represents a target task in robot-agnostic representation, and thus the represented task description can be shared with various robots. When executing the task, it is necessary to convert the robot-agnostic description into commands of a target robot. To increase the reusability, first, we implement the skill library, robot motion primitives, only considering a robot hand and we regarded that a robot was just a carrier to move the hand on the target trajectory. The skill library is reusable if we would like to the same robot hand. Second, we employ the generic IK solver to quickly swap a robot. We verify the hardware-level reusability by applying two task descriptions to two different robots, Nextage and Fetch.
translated by 谷歌翻译
本文对地面农业机器人系统和应用进行了全面综述,并特别关注收获,涵盖研究,商业产品和结果及其能力技术。大多数文献涉及作物检测的发展,通过视觉及其相关挑战的现场导航。健康监测,产量估计,水状态检查,种子种植和清除杂草经常遇到任务。关于机器人收割,苹果,草莓,西红柿和甜辣椒,主要是出版物,研究项目和商业产品中考虑的农作物。据报道的收获农业解决方案,通常由移动平台,单个机器人手臂/操纵器和各种导航/视觉系统组成。本文回顾了报告的特定功能和硬件的发展,通常是运营农业机器人收割机所要求的;它们包括(a)视觉系统,(b)运动计划/导航方法(对于机器人平台和/或ARM),(c)具有3D可视化的人类机器人交流(HRI)策略,(d)系统操作计划&掌握策略和(e)机器人最终效果/抓手设计。显然,自动化农业,特别是通过机器人系统的自主收获是一个研究领域,它仍然敞开着,在可以做出新的贡献的地方提供了一些挑战。
translated by 谷歌翻译
We describe a learning-based approach to handeye coordination for robotic grasping from monocular images. To learn hand-eye coordination for grasping, we trained a large convolutional neural network to predict the probability that task-space motion of the gripper will result in successful grasps, using only monocular camera images and independently of camera calibration or the current robot pose. This requires the network to observe the spatial relationship between the gripper and objects in the scene, thus learning hand-eye coordination. We then use this network to servo the gripper in real time to achieve successful grasps. To train our network, we collected over 800,000 grasp attempts over the course of two months, using between 6 and 14 robotic manipulators at any given time, with differences in camera placement and hardware. Our experimental evaluation demonstrates that our method achieves effective real-time control, can successfully grasp novel objects, and corrects mistakes by continuous servoing.
translated by 谷歌翻译
在机器人操作中,以前未见的新物体的自主抓住是一个持续的挑战。在过去的几十年中,已经提出了许多方法来解决特定机器人手的问题。最近引入的Unigrasp框架具有推广到不同类型的机器人抓手的能力。但是,此方法不适用于具有闭环约束的抓手,并且当应用于具有MultiGRASP配置的机器人手时,具有数据范围。在本文中,我们提出了有效绘制的,这是一种独立于抓手模型规范的广义掌握合成和抓地力控制方法。有效绘制利用抓地力工作空间功能,而不是Unigrasp的抓属属性输入。这在训练过程中将记忆使用量减少了81.7%,并可以推广到更多类型的抓地力,例如具有闭环约束的抓手。通过在仿真和现实世界中进行对象抓住实验来评估有效绘制的有效性;结果表明,所提出的方法在仅考虑没有闭环约束的抓手时也胜过Unigrasp。在这些情况下,有效抓取在产生接触点的精度高9.85%,模拟中的握把成功率提高了3.10%。现实世界实验是用带有闭环约束的抓地力进行的,而Unigrasp无法处理,而有效绘制的成功率达到了83.3%。分析了该方法的抓地力故障的主要原因,突出了增强掌握性能的方法。
translated by 谷歌翻译
使机器人能够靠近人类工作,需要一个控制框架,该框架不仅包括用于自主和协调的交互的多感官信息,而且还具有感知的任务计划,以确保适应性和灵活的协作行为。在这项研究中,提出了一种直观的任务堆叠(ISOT)制剂,通过考虑人臂姿势和任务进展来定义机器人的动作。该框架以visuo-tactive信息增强,以有效地了解协作环境,直观地在计划的子任务之间切换。来自深度摄像机的视觉反馈监视并估计物体的姿势和人臂姿势,而触觉数据提供勘探技能以检测和维持所需的触点以避免物体滑动。为了评估由人类和人机合作伙伴执行的所提出的框架,装配和拆卸任务的性能,有效性和可用性,使用不同的评估指标进行考虑和分析,方法适应,掌握校正,任务协调延迟,累积姿势偏差,以及任务重复性。
translated by 谷歌翻译
我们提出了6D(种子)中系列弹性末端效应器的框架,其将空间兼容的元素结合在粘合性感觉中,以掌握和操纵野外的工具。我们的框架将串联弹性的益处推广到6- DOF,同时提供使用粘液触觉感测的控制抽象。我们提出了一种用于粘合性感测的相对姿势估计的算法,以及能够实现与环境的稳定力相互作用的空间混合力力位置控制器。我们展示了我们对需要监管空间力量的工具的效果。视频链接:https://youtu.be/2-yuifspdrk
translated by 谷歌翻译
这项工作提出了下一代人类机器人界面,只能通过视觉来推断和实现用户的操纵意图。具体而言,我们开发了一个集成了近眼跟踪和机器人操作的系统,以实现用户指定的操作(例如,抓取,拾取和位置等),在其中将视觉信息与人类的注意合并在一起,以创建为所需的映射机器人动作。为了实现视力指导的操纵,开发了一个头部安装的近眼跟踪设备,以实时跟踪眼球运动,以便可以确定用户的视觉注意力。为了提高抓地力性能,然后开发出基于变压器的GRASP模型。堆叠的变压器块用于提取层次特征,其中在每个阶段扩展了通道的体积,同时挤压了特征地图的分辨率。实验验证表明,眼球跟踪系统产生低的凝视估计误差,抓地力系统在多个握把数据集上产生有希望的结果。这项工作是基于凝视互动的辅助机器人的概念证明,该机器人具有巨大的希望,可以帮助老年人或上肢残疾在日常生活中。可在\ url {https://www.youtube.com/watch?v=yuz1hukyurm}上获得演示视频。
translated by 谷歌翻译
We introduce OPEND, a benchmark for learning how to use a hand to open cabinet doors or drawers in a photo-realistic and physics-reliable simulation environment driven by language instruction. To solve the task, we propose a multi-step planner composed of a deep neural network and rule-base controllers. The network is utilized to capture spatial relationships from images and understand semantic meaning from language instructions. Controllers efficiently execute the plan based on the spatial and semantic understanding. We evaluate our system by measuring its zero-shot performance in test data set. Experimental results demonstrate the effectiveness of decision planning by our multi-step planner for different hands, while suggesting that there is significant room for developing better models to address the challenge brought by language understanding, spatial reasoning, and long-term manipulation. We will release OPEND and host challenges to promote future research in this area.
translated by 谷歌翻译
水下操纵是机器人中最卓越的正在进行的研究科目之一。\ acp {i-i-auv}不仅要应对与传统操纵任务相关的技术挑战,而且电流和波浪扰乱车辆的稳定性,以及低光,浑浊的水条件妨碍感知周围环境。当然,动态性质和对海洋环境的有限理解阻碍了水下机器人操纵的自主性能。该手稿讨论了以前的研究和限制因素,施加了对自治水下操纵的长期展示前景,最后突出了有可能提高I-AUV的自治能力的研究方向。
translated by 谷歌翻译
四倍的机器人通常配备额外的手臂进行操作,对价格和重量产生负面影响。另一方面,腿部运动的要求意味着,这种机器人的腿通常具有执行操作所需的扭矩和精度。在本文中,我们介绍了一种新颖的设计,该设计针对一个小型四倍的机器人,配备了两个受甲壳类动物和指关节walker前的前肢启发的腿部安装机。通过使用腿部已经存在的执行器,我们只能使用每个肢体额外的3个电动机来实现操纵。该设计使相对于腿部电动机的小型且廉价的执行器的使用,从而进一步降低了成本和重量。由于集成的电缆/皮带轮系统,惯性的瞬间对腿的影响很小。正如我们在一套远程操作实验中所显示的那样,机器人能够执行单个和双LIMB操纵,并在操纵模式之间过渡。拟议的设计的性能与额外的手臂相似,同时称重和成本减少了每个操纵器的5倍,并可以完成需要2个操纵器的任务。
translated by 谷歌翻译