农业是人类社会的支柱,因为它对每个生物体都是必需的。就人类而言,帕迪种植非常重要,主要是亚洲大陆,这是主食食品之一。然而,农业中的植物疾病导致生产力枯竭。植物疾病通常是由害虫,昆虫和病原体引起的,如果在特定时间内不受控制,它们的生产力将大规模降低至大规模。最终,人们看不到稻田产量的增加。准确,及时识别植物疾病可以帮助农民减轻由于害虫和疾病而导致的损失。最近,深度学习技术已被用来识别稻田疾病并克服这些问题。本文基于模型实现了卷积神经网络(CNN),并测试了由636个红外图像样本组成的公共数据集,其中有五个帕迪病类别和一个健康的类别。拟议的模型熟练地识别和分类的五种不同类型的帕迪疾病,准确度为88.28%
translated by 谷歌翻译
在该研究中,提出了一种具有贝叶斯优化(ADSNN-BO)的关注深度可分离的神经网络,以检测和分类稻米图像的水稻疾病。水稻疾病经常导致20至40%的公司生产损失的产量,与全球经济有关。快速疾病鉴定对于计划及时计划治疗并减​​少CORP损失至关重要。水稻疾病诊断仍然主要是手动进行的。为实现AI辅助快速准确的疾病检测,我们提出了基于MobileNet结构的Adsnn-Bo模型和增强注意机制。此外,贝叶斯优化方法应用于调整模型的超级参数。交叉验证的分类实验是基于公共米病数据集进行的,总共有四个类别。实验结果表明,我们的移动兼容ADSNN-BO模型实现了94.65 \%的测试精度,这占据了所有最先进的模型。为了检查我们所提出的模型的可解释性,还进行了包括激活图和过滤器可视化方法的特征分析。结果表明,我们提出的基于关注机制可以更有效地引导Adsnn-Bo模型学习信息性功能。本研究的结果将促进农业领域快速植物疾病诊断和控制的人工智能。
translated by 谷歌翻译
深度学习模型通过从训练的数据集学习来提供图像处理的令人难以置信的结果。菠菜是一种含有维生素和营养素的叶蔬菜。在我们的研究中,已经使用了一种可以自动识别菠菜的深度学习方法,并且该方法具有总共五种菠菜的数据集,其中包含3785个图像。四种卷积神经网络(CNN)模型用于对我们的菠菜进行分类。这些模型为图像分类提供更准确的结果。在应用这些模型之前,存在一些预处理图像数据。为了预处理数据,需要发生一些方法。那些是RGB转换,过滤,调整大小和重新划分和分类。应用这些方法后,图像数据被预处理并准备好在分类器算法中使用。这些分类器的准确性在98.68%至99.79%之间。在这些模型中,VGG16实现了99.79%的最高精度。
translated by 谷歌翻译
为了确保全球粮食安全和利益相关者的总体利润,正确检测和分类植物疾病的重要性至关重要。在这方面,基于深度学习的图像分类的出现引入了大量解决方案。但是,这些解决方案在低端设备中的适用性需要快速,准确和计算廉价的系统。这项工作提出了一种基于轻巧的转移学习方法,用于从番茄叶中检测疾病。它利用一种有效的预处理方法来增强具有照明校正的叶片图像,以改善分类。我们的系统使用组合模型来提取功能,该模型由预审计的MobilenETV2体系结构和分类器网络组成,以进行有效的预测。传统的增强方法被运行时的增加取代,以避免数据泄漏并解决类不平衡问题。来自PlantVillage数据集的番茄叶图像的评估表明,所提出的体系结构可实现99.30%的精度,型号大小为9.60mb和4.87亿个浮点操作,使其成为低端设备中现实生活的合适选择。我们的代码和型号可在https://github.com/redwankarimsony/project-tomato中找到。
translated by 谷歌翻译
全球一百多个国家的主食是大米(Oryza sativa)。大米的种植对于全球经济增长至关重要。但是,农业产业面临的主要问题是水稻疾病。农作物的质量和数量下降了,这是主要原因。由于任何国家的农民对水稻疾病都没有太多了解,因此他们无法正确诊断稻叶疾病。这就是为什么他们不能适当照顾米叶的原因。结果,生产正在减少。从文献调查中,Yolov5表现出更好的结果与其他深度学习方法相比。由于对象检测技术的不断发展,Yolo家族算法具有非常高的精度和更好的速度,已在各种场景识别任务中使用,以构建稻叶疾病监测系统。我们已经注释了1500个收集的数据集,并提出了基于Yolov5深学习的水稻疾病分类和检测方法。然后,我们训练并评估了Yolov5模型。模拟结果显示了本文提出的增强Yolov5网络的对象检测结果的改进。所需的识别精度,召回,MAP值和F1得分的水平分别为90 \%,67 \%,76 \%和81 \%\%被视为性能指标。
translated by 谷歌翻译
为了产生最大的影响,必须使用基于证据的决策制定公共卫生计划。创建机器学习算法是为了收集,存储,处理和分析数据以提供知识和指导决策。任何监视系统的关键部分是图像分析。截至最近,计算机视觉和机器学习的社区最终对此感到好奇。这项研究使用各种机器学习和图像处理方法来检测和预测疟疾疾病。在我们的研究中,我们发现了深度学习技术作为具有更广泛适用于疟疾检测的智能工具的潜力,通过协助诊断病情,可以使医生受益。我们研究了针对计算机框架和组织的深度学习的共同限制,计算需要准备数据,准备开销,实时执行和解释能力,并发现对这些限制的轴承的未来询问。
translated by 谷歌翻译
农业实践中的一个重要和繁琐的任务之一是检测作物疾病。它需要巨大的时间和熟练的劳动力。本文提出了一种智能有效的方法,用于检测使用计算机视觉和机器学习技术的作物疾病。该拟议的系统能够检测5种常见植物的20个不同疾病,精度为93%。
translated by 谷歌翻译
Almost 80 million Americans suffer from hair loss due to aging, stress, medication, or genetic makeup. Hair and scalp-related diseases often go unnoticed in the beginning. Sometimes, a patient cannot differentiate between hair loss and regular hair fall. Diagnosing hair-related diseases is time-consuming as it requires professional dermatologists to perform visual and medical tests. Because of that, the overall diagnosis gets delayed, which worsens the severity of the illness. Due to the image-processing ability, neural network-based applications are used in various sectors, especially healthcare and health informatics, to predict deadly diseases like cancers and tumors. These applications assist clinicians and patients and provide an initial insight into early-stage symptoms. In this study, we used a deep learning approach that successfully predicts three main types of hair loss and scalp-related diseases: alopecia, psoriasis, and folliculitis. However, limited study in this area, unavailability of a proper dataset, and degree of variety among the images scattered over the internet made the task challenging. 150 images were obtained from various sources and then preprocessed by denoising, image equalization, enhancement, and data balancing, thereby minimizing the error rate. After feeding the processed data into the 2D convolutional neural network (CNN) model, we obtained overall training accuracy of 96.2%, with a validation accuracy of 91.1%. The precision and recall score of alopecia, psoriasis, and folliculitis are 0.895, 0.846, and 1.0, respectively. We also created a dataset of the scalp images for future prospective researchers.
translated by 谷歌翻译
现代科学和技术进步使植物学家可以使用基于计算机视觉的方法进行植物识别任务。这些方法有自己的挑战。叶片分类是针对自动识别植物物种执行的计算机视觉任务,这是由于叶片形态的变化,包括其大小,质地,形状和静脉,这是一个严重的挑战。由于普及和成功实施图像分析,对象识别和语音识别,研究人员最近越来越倾向于基于深度学习的方法,而不是基于传统特征的方法。在本文中,要拥有一个可解释且可靠的系统,通过提出一种通过三个基于深度学习的模型开发出高效的最大行为相似之处的高效方法,以叶片识别建模。可视化三个模型的不同层,以确保对植物学家的行为进行准确的建模。第一和第二型型号是从头开始设计的。关于第三个模型,采用了预培训的MobilenetV2与转移学习技术一起使用。在两个著名的数据集上评估了所提出的方法:Flavia和Malayakew。根据比较分析,建议的方法比手工制作的特征提取方法和其他深度学习技术更准确,而精度为99.67%和99.81%。与具有自己特定复杂性并依赖数据集的传统技术不同,所提出的方法不需要手工制作的功能提取。同样,与其他深度学习技术相比,它可以提高准确性。此外,SWP叶出现的分布且比其他方法要快得多,因为使用了较少的参数,因此异步使用了较少的参数。
translated by 谷歌翻译
大多数杂草物种都会通过竞争高价值作物所需的营养而产生对农业生产力的不利影响。手动除草对于大型种植区不实用。已经开展了许多研究,为农业作物制定了自动杂草管理系统。在这个过程中,其中一个主要任务是识别图像中的杂草。但是,杂草的认可是一个具有挑战性的任务。它是因为杂草和作物植物的颜色,纹理和形状类似,可以通过成像条件,当记录图像时的成像条件,地理或天气条件进一步加剧。先进的机器学习技术可用于从图像中识别杂草。在本文中,我们调查了五个最先进的深神经网络,即VGG16,Reset-50,Inception-V3,Inception-Resnet-V2和MobileNetv2,并评估其杂草识别的性能。我们使用了多种实验设置和多个数据集合组合。特别是,我们通过组合几个较小的数据集,通过数据增强构成了一个大型DataSet,缓解了类别不平衡,并在基于深度神经网络的基准测试中使用此数据集。我们通过保留预先训练的权重来调查使用转移学习技术来利用作物和杂草数据集的图像提取特征和微调它们。我们发现VGG16比小规模数据集更好地执行,而ResET-50比其他大型数据集上的其他深网络更好地执行。
translated by 谷歌翻译
作物疾病是对粮食安全的主要威胁,其快速识别对于防止产量损失很重要。由于缺乏必要的基础设施,因此很难迅速识别这些疾病。计算机视觉的最新进展和智能手机渗透的渗透为智能手机辅助疾病识别铺平了道路。大多数植物疾病在植物的叶面结构上留下了特定的文物。这项研究于2020年在巴基斯坦拉合尔工程技术大学计算机科学与工程系进行,以检查基于叶片的植物疾病识别。这项研究为叶面疾病鉴定提供了基于神经网络的深度解决方案,并纳入了图像质量评估,以选择执行识别所需质量的图像,并将其命名为农业病理学家(AGRO PATH)。新手摄影师的捕获图像可能包含噪音,缺乏结构和模糊,从而导致诊断失败或不准确。此外,Agropath模型具有99.42%的叶面疾病鉴定精度。拟议的添加对于在农业领域的叶面疾病鉴定的应用特别有用。
translated by 谷歌翻译
深度学习目前是机器学习中最重要的分支,在语音识别,计算机视觉,图像分类和医学成像分析中的应用。植物识别是可以使用图像分类通过其叶子识别植物物种的领域之一。植物学家通过亲自检查将大量时间用于识别植物物种。本文描述了一种剖析瑞典叶子和识别植物物种的颜色图像的方法。为了实现更高的准确性,该任务是在预先训练的分类器VGG-19的帮助下使用转移学习完成的。分类的四个主要过程是图像预处理,图像增强,特征提取和识别,这些过程是作为整体模型评估的一部分进行的。 VGG-19分类器通过采用预定义的隐藏层(例如卷积层,最大池层和完全连接的层)来掌握叶子的特征,并最终使用Soft-Max层为所有植物类生成特征表示。该模型获得了与瑞典叶数据集的各个方面相关的知识,其中包含15种树类,并有助于预测未知植物的适当类别,准确性为99.70%,这比以前报告的研究工作高。
translated by 谷歌翻译
这项工作使用水果和叶子的图像提出了一个基于学习的植物性诊断系统。已经使用了五个最先进的卷积神经网络(CNN)来实施该系统。迄今为止,模型的精度一直是此类应用程序的重点,并且尚未考虑模型的模型适用于最终用户设备。两种模型量化技术,例如float16和动态范围量化已应用于五个最新的CNN体系结构。研究表明,量化的GoogleNet模型达到了0.143 MB的尺寸,准确度为97%,这是考虑到大小标准的最佳候选模型。高效网络模型以99%的精度达到了4.2MB的大小,这是考虑性能标准的最佳模型。源代码可在https://github.com/compostieai/guava-disease-detection上获得。
translated by 谷歌翻译
植物疾病是全球作物损失的主要原因,对世界经济产生了影响。为了解决这些问题,智能农业解决方案正在发展,将物联网和机器学习结合起来,以进行早期疾病检测和控制。许多这样的系统使用基于视觉的机器学习方法进行实时疾病检测和诊断。随着深度学习技术的发展,已经出现了新方法,这些方法采用卷积神经网络进行植物性疾病检测和鉴定。基于视觉的深度学习的另一个趋势是使用视觉变压器,事实证明,这些变压器是分类和其他问题的强大模型。但是,很少研究视力变压器以进行植物病理应用。在这项研究中,为植物性疾病鉴定提出了一个启用视觉变压器的卷积神经网络模型。提出的模型将传统卷积神经网络的能力与视觉变压器有效地识别出多种农作物的大量植物疾病。拟议的模型具有轻巧的结构,只有80万个可训练的参数,这使其适合基于物联网的智能农业服务。 PlantXvit的性能在五个公开可用的数据集上进行了评估。拟议的PlantXvit网络在所有五个数据集上的性能要比五种最先进的方法更好。即使在挑战性的背景条件下,识别植物性疾病的平均准确性分别超过了苹果,玉米和稻米数据集的93.55%,92.59%和98.33%。使用梯度加权的类激活图和局部可解释的模型不可思议的解释来评估所提出模型的解释性效率。
translated by 谷歌翻译
需要快速,准确且负担得起的水稻疾病检测方法来协助水稻农民解决设备和专业短缺问题。在本文中,我们专注于使用计算机视觉技术来检测稻田照片图像的水稻疾病的解决方案。由于各种环境因素,处理普通农民在现实通用情况下处理的图像非常具有挑战性,而稻叶对象大小的变化是导致绩效等级的主要因素。为了解决这个问题,我们提出了一项技术,该技术将CNN对象检测与图像平铺技术结合在一起,基于图像中稻叶的自动估计宽度尺寸,作为将原始输入图像划分的尺寸参考。通过小型CNN(例如18层重新连接体系结构模型)创建了一个用于估计叶片宽度的模型。生成了一个新的,具有均匀尺寸的物体的新的瓷砖子图像集,并用作训练水稻疾病预测模型的输入。我们的技术对八种不同类型的水稻疾病的4,960张图像进行了评估,包括爆炸,枯萎病,棕色点,狭窄的棕色点,橙色,红色条纹,稻草特技病毒和条纹疾病。在所有八个类中评估的叶宽度预测任务的平均绝对百分比误差(MAPE)在实验中为11.18%,表明叶宽度预测模型的性能很好。训练和测试使用瓷砖数据集进行了训练和测试时,Yolov4体系结构预测性能的平均平均精度(地图)的平均精度(地图)的平均精度(地图)的平均精度(地图)提高到91.14%。根据我们的研究,提出的图像平铺技术提高了水稻疾病的检测效率。
translated by 谷歌翻译
呼吸声分类中的问题已在去年的临床科学家和医学研究员团体中获得了良好的关注,以诊断Covid-19疾病。迄今为止,各种模型的人工智能(AI)进入了现实世界,从人类生成的声音等人生成的声音中检测了Covid-19疾病,例如语音/言语,咳嗽和呼吸。实现卷积神经网络(CNN)模型,用于解决基于人工智能(AI)的机器上的许多真实世界问题。在这种情况下,建议并实施一个维度(1D)CNN,以诊断Covid-19的呼吸系统疾病,例如语音,咳嗽和呼吸。应用基于增强的机制来改善Covid-19声音数据集的预处理性能,并使用1D卷积网络自动化Covid-19疾病诊断。此外,使用DDAE(数据去噪自动编码器)技术来产生诸如输入功能的深声特征,而不是采用MFCC(MEL频率跳跃系数)的标准输入,并且它更好地执行比以前的型号的准确性和性能。
translated by 谷歌翻译
人工神经网络(ANN)能够学习,纠正错误和将大量原始数据转化为治疗和护理的有用医疗决策,这增加了增强患者安全和护理质量的普及。因此,本文审查了ANN的关键作用为患者医疗保健决策提供有价值的见解和有效的疾病诊断。我们彻底审查了现有文献中的不同类型的ANN,以便为复杂应用程序进行高级ANNS适配。此外,我们还调查Ann的各种疾病诊断和治疗的进步,例如病毒,皮肤,癌症和Covid-19。此外,我们提出了一种名为ConxNet的新型深度卷积神经网络(CNN)模型,用于提高Covid-19疾病的检测准确性。 ConxNet经过培训并使用不同的数据集进行测试,它达到了超过97%的检测精度和精度,这明显优于现有型号。最后,我们突出了未来的研究方向和挑战,例如算法的复杂性,可用数据,隐私和安全性,以及与ANN的生物传染集成。这些研究方向需要大幅关注改善医疗诊断和治疗应用的ANN的范围。
translated by 谷歌翻译
心脏肿大确实是一种心脏肿大的医学疾病。如果早点被捕获,心脏肿大最好处理,因此早期发现至关重要。数十年来,胸部X射线是最常用的X射线照相检查之一,一直用于检测和可视化人体器官异常。 X射线也是心脏肿瘤的重要医学诊断工具。即使对于领域专家,将许多类型的疾病与X射线区分开是一项艰巨且耗时的任务。深度学习模型在大型数据集时也是最有效的,但是由于隐私问题,大型数据集在医疗行业内部很少可用。这项研究介绍了一种基于学习的基于学习的定制的u-NET模型,用于检测心脏肿瘤疾病。在训练阶段,使用了来自“ ChestX-Ray8”开源真实数据集的胸部X射线图像。为了减少计算时间,此模型在进行训练步骤之前,在进行数据预处理,图像改进,图像压缩和分类。这项工作使用胸部X射线图像数据集模拟并产生了94%的诊断准确性,灵敏度为96.2%,特异性为92.5%,这比先前培训的模型发现以识别心脏全肿瘤疾病。
translated by 谷歌翻译
一种名为Covid-19的新发现的冠状病毒疾病主要影响人类呼吸系统。 Covid-19是一种由起源于中国武汉的病毒引起的传染病。早期诊断是医疗保健提供者的主要挑战。在较早的阶段,医疗机构令人眼花azz乱,因为没有适当的健康辅助工具或医学可以检测到COVID-19。引入了一种新的诊断工具RT-PCR(逆转录聚合酶链反应)。它从患者的鼻子或喉咙中收集拭子标本,在那里共有19个病毒。该方法有一些与准确性和测试时间有关的局限性。医学专家建议一种称为CT(计算机断层扫描)的替代方法,该方法可以快速诊断受感染的肺部区域并在早期阶段识别Covid-19。使用胸部CT图像,计算机研究人员开发了几种识别Covid-19疾病的深度学习模型。这项研究介绍了卷积神经网络(CNN)和基于VGG16的模型,用于自动化的COVID-19在胸部CT图像上识别。使用14320 CT图像的公共数据集的实验结果显示,CNN和VGG16的分类精度分别为96.34%和96.99%。
translated by 谷歌翻译
Pneumonia, a respiratory infection brought on by bacteria or viruses, affects a large number of people, especially in developing and impoverished countries where high levels of pollution, unclean living conditions, and overcrowding are frequently observed, along with insufficient medical infrastructure. Pleural effusion, a condition in which fluids fill the lung and complicate breathing, is brought on by pneumonia. Early detection of pneumonia is essential for ensuring curative care and boosting survival rates. The approach most usually used to diagnose pneumonia is chest X-ray imaging. The purpose of this work is to develop a method for the automatic diagnosis of bacterial and viral pneumonia in digital x-ray pictures. This article first presents the authors' technique, and then gives a comprehensive report on recent developments in the field of reliable diagnosis of pneumonia. In this study, here tuned a state-of-the-art deep convolutional neural network to classify plant diseases based on images and tested its performance. Deep learning architecture is compared empirically. VGG19, ResNet with 152v2, Resnext101, Seresnet152, Mobilenettv2, and DenseNet with 201 layers are among the architectures tested. Experiment data consists of two groups, sick and healthy X-ray pictures. To take appropriate action against plant diseases as soon as possible, rapid disease identification models are preferred. DenseNet201 has shown no overfitting or performance degradation in our experiments, and its accuracy tends to increase as the number of epochs increases. Further, DenseNet201 achieves state-of-the-art performance with a significantly a smaller number of parameters and within a reasonable computing time. This architecture outperforms the competition in terms of testing accuracy, scoring 95%. Each architecture was trained using Keras, using Theano as the backend.
translated by 谷歌翻译