We propose Panoptic Lifting, a novel approach for learning panoptic 3D volumetric representations from images of in-the-wild scenes. Once trained, our model can render color images together with 3D-consistent panoptic segmentation from novel viewpoints. Unlike existing approaches which use 3D input directly or indirectly, our method requires only machine-generated 2D panoptic segmentation masks inferred from a pre-trained network. Our core contribution is a panoptic lifting scheme based on a neural field representation that generates a unified and multi-view consistent, 3D panoptic representation of the scene. To account for inconsistencies of 2D instance identifiers across views, we solve a linear assignment with a cost based on the model's current predictions and the machine-generated segmentation masks, thus enabling us to lift 2D instances to 3D in a consistent way. We further propose and ablate contributions that make our method more robust to noisy, machine-generated labels, including test-time augmentations for confidence estimates, segment consistency loss, bounded segmentation fields, and gradient stopping. Experimental results validate our approach on the challenging Hypersim, Replica, and ScanNet datasets, improving by 8.4, 13.8, and 10.6% in scene-level PQ over state of the art.
translated by 谷歌翻译
具有高质量注释的大规模培训数据对于训练语义和实例分割模型至关重要。不幸的是,像素的注释是劳动密集型且昂贵的,从而提高了对更有效的标签策略的需求。在这项工作中,我们提出了一种新颖的3D到2D标签传输方法,即Panoptic Nerf,该方法旨在从易于体现的粗3D边界原始基原始素中获取每个像素2D语义和实例标签。我们的方法利用NERF作为可区分的工具来统一从现有数据集中传输的粗3D注释和2D语义提示。我们证明,这种组合允许通过语义信息指导的几何形状,从而使跨多个视图的准确语义图渲染。此外,这种融合过程解决了粗3D注释的标签歧义,并过滤了2D预测中的噪声。通过推断3D空间并渲染到2D标签,我们的2D语义和实例标签是按设计一致的多视图。实验结果表明,在挑战Kitti-360数据集的挑战性城市场景方面,Pastic Nerf的表现优于现有标签传输方法。
translated by 谷歌翻译
人类可以从少量的2D视图中从3D中感知场景。对于AI代理商,只有几个图像的任何视点识别场景的能力使它们能够有效地与场景及其对象交互。在这项工作中,我们试图通过这种能力赋予机器。我们提出了一种模型,它通过将新场景的几个RGB图像进行输入,并通过将其分割为语义类别来识别新的视点中的场景。所有这一切都没有访问这些视图的RGB图像。我们将2D场景识别与隐式3D表示,并从数百个场景的多视图2D注释中学习,而无需超出相机姿势的3D监督。我们试验具有挑战性的数据集,并展示我们模型的能力,共同捕捉新颖场景的语义和几何形状,具有不同的布局,物体类型和形状。
translated by 谷歌翻译
我们呈现NESF,一种用于单独从构成的RGB图像中生成3D语义场的方法。代替经典的3D表示,我们的方法在最近的基础上建立了隐式神经场景表示的工作,其中3D结构被点亮功能捕获。我们利用这种方法来恢复3D密度领域,我们然后在其中培训由构成的2D语义地图监督的3D语义分段模型。尽管仅在2D信号上培训,我们的方法能够从新颖的相机姿势生成3D一致的语义地图,并且可以在任意3D点查询。值得注意的是,NESF与产生密度场的任何方法兼容,并且随着密度场的质量改善,其精度可提高。我们的实证分析在复杂的实际呈现的合成场景中向竞争性2D和3D语义分割基线表现出可比的质量。我们的方法是第一个提供真正密集的3D场景分段,需要仅需要2D监督培训,并且不需要任何关于新颖场景的推论的语义输入。我们鼓励读者访问项目网站。
translated by 谷歌翻译
神经隐式表示在新的视图合成和来自多视图图像的高质量3D重建方面显示了其有效性。但是,大多数方法都集中在整体场景表示上,但忽略了其中的各个对象,从而限制了潜在的下游应用程序。为了学习对象组合表示形式,一些作品将2D语义图作为训练中的提示,以掌握对象之间的差异。但是他们忽略了对象几何和实例语义信息之间的牢固联系,这导致了单个实例的不准确建模。本文提出了一个新颖的框架ObjectsDF,以在3D重建和对象表示中构建具有高保真度的对象复合神经隐式表示。观察常规音量渲染管道的歧义,我们通过组合单个对象的签名距离函数(SDF)来对场景进行建模,以发挥明确的表面约束。区分不同实例的关键是重新审视单个对象的SDF和语义标签之间的牢固关联。特别是,我们将语义信息转换为对象SDF的函数,并为场景和对象开发统一而紧凑的表示形式。实验结果表明,ObjectSDF框架在表示整体对象组合场景和各个实例方面的优越性。可以在https://qianyiwu.github.io/objectsdf/上找到代码
translated by 谷歌翻译
Neural Radiance Fields (NeRFs) encode the radiance in a scene parameterized by the scene's plenoptic function. This is achieved by using an MLP together with a mapping to a higher-dimensional space, and has been proven to capture scenes with a great level of detail. Naturally, the same parameterization can be used to encode additional properties of the scene, beyond just its radiance. A particularly interesting property in this regard is the semantic decomposition of the scene. We introduce a novel technique for semantic soft decomposition of neural radiance fields (named SSDNeRF) which jointly encodes semantic signals in combination with radiance signals of a scene. Our approach provides a soft decomposition of the scene into semantic parts, enabling us to correctly encode multiple semantic classes blending along the same direction -- an impossible feat for existing methods. Not only does this lead to a detailed, 3D semantic representation of the scene, but we also show that the regularizing effects of the MLP used for encoding help to improve the semantic representation. We show state-of-the-art segmentation and reconstruction results on a dataset of common objects and demonstrate how the proposed approach can be applied for high quality temporally consistent video editing and re-compositing on a dataset of casually captured selfie videos.
translated by 谷歌翻译
综合照片 - 现实图像和视频是计算机图形的核心,并且是几十年的研究焦点。传统上,使用渲染算法(如光栅化或射线跟踪)生成场景的合成图像,其将几何形状和材料属性的表示为输入。统称,这些输入定义了实际场景和呈现的内容,并且被称为场景表示(其中场景由一个或多个对象组成)。示例场景表示是具有附带纹理的三角形网格(例如,由艺术家创建),点云(例如,来自深度传感器),体积网格(例如,来自CT扫描)或隐式曲面函数(例如,截短的符号距离)字段)。使用可分辨率渲染损耗的观察结果的这种场景表示的重建被称为逆图形或反向渲染。神经渲染密切相关,并将思想与经典计算机图形和机器学习中的思想相结合,以创建用于合成来自真实观察图像的图像的算法。神经渲染是朝向合成照片现实图像和视频内容的目标的跨越。近年来,我们通过数百个出版物显示了这一领域的巨大进展,这些出版物显示了将被动组件注入渲染管道的不同方式。这种最先进的神经渲染进步的报告侧重于将经典渲染原则与学习的3D场景表示结合的方法,通常现在被称为神经场景表示。这些方法的一个关键优势在于它们是通过设计的3D-一致,使诸如新颖的视点合成捕获场景的应用。除了处理静态场景的方法外,我们还涵盖了用于建模非刚性变形对象的神经场景表示...
translated by 谷歌翻译
了解单个图像的3D场景是各种任务的基础,例如用于机器人,运动规划或增强现实。来自单个RGB图像的3D感知的现有工作倾向于专注于几何重建,或用语义分割或实例分割的几何重建。受到2D Panoptic分割的启发,我们建议统一几何重建,3D语义分割和3D实例分段的任务,进入Panoptic 3D场景重建的任务 - 从单个RGB图像预测相机中场景的完整几何重建图像的截图,以及语义和实例分割。因此,我们为从单个RGB图像提出了一种全新3D场景的新方法,该方法学习从输入图像到达3D容量场景表示来升力和传播2D特征。我们证明,这种联合场景重建,语义和实例分割的整体视图是有益的,独立地处理任务,从而优于替代方法。
translated by 谷歌翻译
Neural Radiance Field (NeRF), a new novel view synthesis with implicit scene representation has taken the field of Computer Vision by storm. As a novel view synthesis and 3D reconstruction method, NeRF models find applications in robotics, urban mapping, autonomous navigation, virtual reality/augmented reality, and more. Since the original paper by Mildenhall et al., more than 250 preprints were published, with more than 100 eventually being accepted in tier one Computer Vision Conferences. Given NeRF popularity and the current interest in this research area, we believe it necessary to compile a comprehensive survey of NeRF papers from the past two years, which we organized into both architecture, and application based taxonomies. We also provide an introduction to the theory of NeRF based novel view synthesis, and a benchmark comparison of the performance and speed of key NeRF models. By creating this survey, we hope to introduce new researchers to NeRF, provide a helpful reference for influential works in this field, as well as motivate future research directions with our discussion section.
translated by 谷歌翻译
我们向渲染和时间(4D)重建人类的渲染和时间(4D)重建的神经辐射场,通过稀疏的摄像机捕获或甚至来自单眼视频。我们的方法将思想与神经场景表示,新颖的综合合成和隐式统计几何人称的人类表示相结合,耦合使用新颖的损失功能。在先前使用符号距离功能表示的结构化隐式人体模型,而不是使用统一的占用率来学习具有统一占用的光域字段。这使我们能够从稀疏视图中稳健地融合信息,并概括超出在训练中观察到的姿势或视图。此外,我们应用几何限制以共同学习观察到的主题的结构 - 包括身体和衣服 - 并将辐射场正规化为几何合理的解决方案。在多个数据集上的广泛实验证明了我们方法的稳健性和准确性,其概括能力显着超出了一系列的姿势和视图,以及超出所观察到的形状的统计外推。
translated by 谷歌翻译
We present a method that synthesizes novel views of complex scenes by interpolating a sparse set of nearby views. The core of our method is a network architecture that includes a multilayer perceptron and a ray transformer that estimates radiance and volume density at continuous 5D locations (3D spatial locations and 2D viewing directions), drawing appearance information on the fly from multiple source views. By drawing on source views at render time, our method hearkens back to classic work on image-based rendering (IBR), and allows us to render high-resolution imagery. Unlike neural scene representation work that optimizes per-scene functions for rendering, we learn a generic view interpolation function that generalizes to novel scenes. We render images using classic volume rendering, which is fully differentiable and allows us to train using only multiview posed images as supervision. Experiments show that our method outperforms recent novel view synthesis methods that also seek to generalize to novel scenes. Further, if fine-tuned on each scene, our method is competitive with state-of-the-art single-scene neural rendering methods. 1
translated by 谷歌翻译
由于真实的3D注释的类别数据的不可用,在合成数据集中,传统的学习3D对象类别的方法主要受到培训和评估。我们的主要目标是通过在与现有的合成对应物类似的幅度下收集现实世界数据来促进该领域的进步。因此,这项工作的主要贡献是一个大型数据集,称为3D中的常见对象,具有使用相机姿势和地面真相3D点云注释的对象类别的真实多视图图像。 DataSet总共包含从50 MS-Coco类别的近19,000个视频中捕获对象的150万帧,因此,在类别和对象的数量方面,它比替代更大。我们利用这款新数据集进行了几个新型综合和以类别为中心的3D重建方法的第一个大规模“野外”评估。最后,我们贡献了一种新型的神经渲染方法,它利用强大的变压器来重建对象,给出少量的视图。 CO3D DataSet可在HTTPS://github.com/facebookResearch/co3d获取。
translated by 谷歌翻译
这项工作的目标是通过扫描平台捕获的数据进行3D重建和新颖的观看综合,该平台在城市室外环境中常设世界映射(例如,街景)。给定一系列由摄像机和扫描仪通过室外场景的摄像机和扫描仪进行的序列,我们产生可以从中提取3D表面的模型,并且可以合成新颖的RGB图像。我们的方法扩展了神经辐射字段,已经证明了用于在受控设置中的小型场景中的逼真新颖的图像,用于利用异步捕获的LIDAR数据,用于寻址捕获图像之间的曝光变化,以及利用预测的图像分段来监督密度。在光线指向天空。这三个扩展中的每一个都在街道视图数据上的实验中提供了显着的性能改进。我们的系统产生最先进的3D表面重建,并与传统方法(例如〜Colmap)和最近的神经表示(例如〜MIP-NERF)相比,合成更高质量的新颖视图。
translated by 谷歌翻译
Input: 3 views of held-out scene NeRF pixelNeRF Output: Rendered new views Input Novel views Input Novel views Input Novel views Figure 1: NeRF from one or few images. We present pixelNeRF, a learning framework that predicts a Neural Radiance Field (NeRF) representation from a single (top) or few posed images (bottom). PixelNeRF can be trained on a set of multi-view images, allowing it to generate plausible novel view synthesis from very few input images without test-time optimization (bottom left). In contrast, NeRF has no generalization capabilities and performs poorly when only three input views are available (bottom right).
translated by 谷歌翻译
在本文中,我们研究了2D视图中3D场景几何分解和操纵的问题。通过利用最新的隐式神经表示技术,尤其是吸引人的神经辐射领域,我们引入了一个对象字段组件,以了解仅从2D监督的3D空间中所有单个对象的独特代码。该组件的关键是一系列精心设计的损失函数,以使每个3D点,尤其是在非占用空间中,即使没有3D标签,也可以有效地优化。此外,我们引入了一种反查询算法,以自由操纵学习的场景表示中的任何指定的3D对象形状。值得注意的是,我们的操纵算法可以明确解决关键问题,例如对象碰撞和视觉遮挡。我们的方法称为DM-NERF,是最早在单个管道中同时重建,分解,操纵和渲染复杂3D场景的方法之一。在三个数据集上进行的大量实验清楚地表明,我们的方法可以从2D视图中准确分解所有3D对象,从而允许在3D空间中自由操纵任何感兴趣的对象,例如翻译,旋转,尺寸调整和变形。
translated by 谷歌翻译
计算机愿景中的经典问题是推断从几个可用于以交互式速率渲染新颖视图的图像的3D场景表示。以前的工作侧重于重建预定定义的3D表示,例如,纹理网格或隐式表示,例如隐式表示。辐射字段,并且通常需要输入图像,具有精确的相机姿势和每个新颖场景的长处理时间。在这项工作中,我们提出了场景表示变换器(SRT),一种方法,该方法处理新的区域的构成或未铺设的RGB图像,Infers Infers“设置 - 潜在场景表示”,并合成新颖的视图,全部在一个前馈中经过。为了计算场景表示,我们提出了视觉变压器的概括到图像组,实现全局信息集成,从而实现3D推理。一个有效的解码器变压器通过参加场景表示来参加光场以呈现新颖的视图。通过最大限度地减少新型视图重建错误,学习是通过最终到底的。我们表明,此方法在PSNR和Synthetic DataSets上的速度方面优于最近的基线,包括为纸张创建的新数据集。此外,我们展示了使用街景图像支持现实世界户外环境的交互式可视化和语义分割。
translated by 谷歌翻译
We address the problem of synthesizing novel views from a monocular video depicting a complex dynamic scene. State-of-the-art methods based on temporally varying Neural Radiance Fields (aka dynamic NeRFs) have shown impressive results on this task. However, for long videos with complex object motions and uncontrolled camera trajectories, these methods can produce blurry or inaccurate renderings, hampering their use in real-world applications. Instead of encoding the entire dynamic scene within the weights of an MLP, we present a new approach that addresses these limitations by adopting a volumetric image-based rendering framework that synthesizes new viewpoints by aggregating features from nearby views in a scene-motion-aware manner. Our system retains the advantages of prior methods in its ability to model complex scenes and view-dependent effects, but also enables synthesizing photo-realistic novel views from long videos featuring complex scene dynamics with unconstrained camera trajectories. We demonstrate significant improvements over state-of-the-art methods on dynamic scene datasets, and also apply our approach to in-the-wild videos with challenging camera and object motion, where prior methods fail to produce high-quality renderings. Our project webpage is at dynibar.github.io.
translated by 谷歌翻译
我们提出了神经特征融合场(N3F),当将后者应用于分析多个图像作为3D场景时,可改善密集的2D图像特征提取器的方法。给定图像功能提取器,例如使用自学的预训练,N3F使用它作为老师来学习在3D空间中定义的学生网络。 3D学生网络类似于蒸馏所述功能的神经辐射领域,可以使用通常的可区分渲染机械进行培训。结果,N3F很容易适用于大多数神经渲染制剂,包括香草Nerf及其扩展到复杂的动态场景。我们表明,我们的方法不仅可以在不使用手动标签的情况下在场景特定的神经领域的上下文中实现语义理解,而且还可以始终如一地改善自我监督的2D基线。通过考虑各种任务,例如2D对象检索,3D细分和场景编辑,包括各种序列,包括史诗般的基金斯基准中的长期以上的视频,可以证明这一点。
translated by 谷歌翻译
我们介绍了神经点光场,它用稀疏点云上的轻场隐含地表示场景。结合可分辨率的体积渲染与学习的隐式密度表示使得可以合成用于小型场景的新颖视图的照片现实图像。作为神经体积渲染方法需要潜在的功能场景表示的浓密采样,在沿着射线穿过体积的数百个样本,它们从根本上限制在具有投影到数百个训练视图的相同对象的小场景。向神经隐式光线推广稀疏点云允许我们有效地表示每个光线的单个隐式采样操作。这些点光场作为光线方向和局部点特征邻域的函数,允许我们在没有密集的物体覆盖和视差的情况下插入光场条件训练图像。我们评估大型驾驶场景的新型视图综合的提出方法,在那里我们综合了现实的看法,即现有的隐式方法未能代表。我们验证了神经点光场可以通过显式建模场景来实现沿着先前轨迹的视频来预测沿着看不见的轨迹的视频。
translated by 谷歌翻译
最近已经提出了方法,仅使用稀疏语义注释像素的形式使用颜色图像和专家监督,将密度段3D卷成类。尽管令人印象深刻,但这些方法仍然需要相对较大的监督和对象进行分割可能需要几分钟的实践。这样的系统通常仅在其拟合的特定场景上优化其表示形式,而无需利用先前看到的图像中的任何先前信息。在本文中,我们建议使用在大型现有数据集中训练的模型提取的功能,以提高细分性能。我们通过体积渲染特征图和从每个输入图像提取的特征进行监督,将此特征表示形式烘烤到神经辐射场(NERF)中。我们表明,通过将此表示形式烘烤到NERF中,我们可以使后续的分类任务更加容易。我们的实验表明,与在各种场景中现有方法相比,我们的方法具有更高的分割精度,语义注释较少。
translated by 谷歌翻译