全球城市可免费获得大量的地理参考全景图像,以及各种各样的城市物体上的位置和元数据的详细地图。它们提供了有关城市物体的潜在信息来源,但是对象检测的手动注释是昂贵,费力和困难的。我们可以利用这种多媒体来源自动注释街道级图像作为手动标签的廉价替代品吗?使用Panorams框架,我们引入了一种方法,以根据城市上下文信息自动生成全景图像的边界框注释。遵循这种方法,我们仅以快速自动的方式从开放数据源中获得了大规模的(尽管嘈杂,但都嘈杂,但对城市数据集进行了注释。该数据集涵盖了阿姆斯特丹市,其中包括771,299张全景图像中22个对象类别的1400万个嘈杂的边界框注释。对于许多对象,可以从地理空间元数据(例如建筑价值,功能和平均表面积)获得进一步的细粒度信息。这样的信息将很难(即使不是不可能)单独根据图像来获取。为了进行详细评估,我们引入了一个有效的众包协议,用于在全景图像中进行边界框注释,我们将其部署以获取147,075个地面真实对象注释,用于7,348张图像的子集,Panorams-clean数据集。对于我们的Panorams-Noisy数据集,我们对噪声以及不同类型的噪声如何影响图像分类和对象检测性能提供了广泛的分析。我们可以公开提供数据集,全景噪声和全景清洁,基准和工具。
translated by 谷歌翻译
The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the chal-
translated by 谷歌翻译
地理定位的概念是指确定地球上的某些“实体”的位置的过程,通常使用全球定位系统(GPS)坐标。感兴趣的实体可以是图像,图像序列,视频,卫星图像,甚至图像中可见的物体。由于GPS标记媒体的大规模数据集由于智能手机和互联网而迅速变得可用,而深入学习已经上升以提高机器学习模型的性能能力,因此由于其显着影响而出现了视觉和对象地理定位的领域广泛的应用,如增强现实,机器人,自驾驶车辆,道路维护和3D重建。本文提供了对涉及图像的地理定位的全面调查,其涉及从捕获图像(图像地理定位)或图像内的地理定位对象(对象地理定位)的地理定位的综合调查。我们将提供深入的研究,包括流行算法的摘要,对所提出的数据集的描述以及性能结果的分析来说明每个字段的当前状态。
translated by 谷歌翻译
TU Dresden www.cityscapes-dataset.net train/val -fine annotation -3475 images train -coarse annotation -20 000 images test -fine annotation -1525 images
translated by 谷歌翻译
The 1$^{\text{st}}$ Workshop on Maritime Computer Vision (MaCVi) 2023 focused on maritime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicle (USV), and organized several subchallenges in this domain: (i) UAV-based Maritime Object Detection, (ii) UAV-based Maritime Object Tracking, (iii) USV-based Maritime Obstacle Segmentation and (iv) USV-based Maritime Obstacle Detection. The subchallenges were based on the SeaDronesSee and MODS benchmarks. This report summarizes the main findings of the individual subchallenges and introduces a new benchmark, called SeaDronesSee Object Detection v2, which extends the previous benchmark by including more classes and footage. We provide statistical and qualitative analyses, and assess trends in the best-performing methodologies of over 130 submissions. The methods are summarized in the appendix. The datasets, evaluation code and the leaderboard are publicly available at https://seadronessee.cs.uni-tuebingen.de/macvi.
translated by 谷歌翻译
随着深度卷积神经网络的兴起,对象检测在过去几年中取得了突出的进步。但是,这种繁荣无法掩盖小物体检测(SOD)的不令人满意的情况,这是计算机视觉中臭名昭著的挑战性任务之一,这是由于视觉外观不佳和由小目标的内在结构引起的嘈杂表示。此外,用于基准小对象检测方法基准测试的大规模数据集仍然是瓶颈。在本文中,我们首先对小物体检测进行了详尽的审查。然后,为了催化SOD的发展,我们分别构建了两个大规模的小物体检测数据集(SODA),SODA-D和SODA-A,分别集中在驾驶和空中场景上。 SODA-D包括24704个高质量的交通图像和277596个9个类别的实例。对于苏打水,我们收集2510个高分辨率航空图像,并在9个类别上注释800203实例。众所周知,拟议的数据集是有史以来首次尝试使用针对多类SOD量身定制的大量注释实例进行大规模基准测试。最后,我们评估主流方法在苏打水上的性能。我们预计发布的基准可以促进SOD的发展,并产生该领域的更多突破。数据集和代码将很快在:\ url {https://shaunyuan22.github.io/soda}上。
translated by 谷歌翻译
The Mapillary Vistas Dataset is a novel, largescale street-level image dataset containing 25 000 highresolution images annotated into 66 object categories with additional, instance-specific labels for 37 classes. Annotation is performed in a dense and fine-grained style by using polygons for delineating individual objects. Our dataset is 5× larger than the total amount of fine annotations for Cityscapes and contains images from all around the world, captured at various conditions regarding weather, season and daytime. Images come from different imaging devices (mobile phones, tablets, action cameras, professional capturing rigs) and differently experienced photographers. In such a way, our dataset has been designed and compiled to cover diversity, richness of detail and geographic extent. As default benchmark tasks, we define semantic image segmentation and instance-specific image segmentation, aiming to significantly further the development of state-of-theart methods for visual road-scene understanding.
translated by 谷歌翻译
We present a new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of object recognition in the context of the broader question of scene understanding. This is achieved by gathering images of complex everyday scenes containing common objects in their natural context. Objects are labeled using per-instance segmentations to aid in precise object localization. Our dataset contains photos of 91 objects types that would be easily recognizable by a 4 year old. With a total of 2.5 million labeled instances in 328k images, the creation of our dataset drew upon extensive crowd worker involvement via novel user interfaces for category detection, instance spotting and instance segmentation. We present a detailed statistical analysis of the dataset in comparison to PASCAL, ImageNet, and SUN. Finally, we provide baseline performance analysis for bounding box and segmentation detection results using a Deformable Parts Model.
translated by 谷歌翻译
深度学习方法需要大量的注释数据以优化参数。例如,附加具有准确边界框注释的数据集对于现代对象检测任务至关重要。但是,具有这样的像素准确性的标签是费力且耗时的,并且精心制作的标记程序对于降低人造噪声是必不可少的,涉及注释审查和接受测试。在本文中,我们关注嘈杂的位置注释对对象检测方法的性能的影响,并旨在减少噪声的不利影响。首先,当将噪声引入边界框注释中时,一阶段和两阶段检测器都会在实验上观察到明显的性能降解。例如,我们的合成噪声导致可可测试分裂的FCO探测器的性能从38.9%的AP降低到33.6%的AP,对于更快的R-CNN而言,COCO检测器的性能从38.9%的AP下降到37.8%的AP和33.7%的AP。其次,提出了一种基于贝叶斯过滤器进行预测合奏的自我纠正技术,以更好地利用教师学习范式后的嘈杂位置注释。合成和现实世界情景的实验始终证明了我们方法的有效性,例如,我们的方法将FCOS检测器的降解性能从33.6%的AP提高到可可的35.6%AP。
translated by 谷歌翻译
This paper presents a new large scale multi-person tracking dataset -- \texttt{PersonPath22}, which is over an order of magnitude larger than currently available high quality multi-object tracking datasets such as MOT17, HiEve, and MOT20 datasets. The lack of large scale training and test data for this task has limited the community's ability to understand the performance of their tracking systems on a wide range of scenarios and conditions such as variations in person density, actions being performed, weather, and time of day. \texttt{PersonPath22} dataset was specifically sourced to provide a wide variety of these conditions and our annotations include rich meta-data such that the performance of a tracker can be evaluated along these different dimensions. The lack of training data has also limited the ability to perform end-to-end training of tracking systems. As such, the highest performing tracking systems all rely on strong detectors trained on external image datasets. We hope that the release of this dataset will enable new lines of research that take advantage of large scale video based training data.
translated by 谷歌翻译
The research community has increasing interest in autonomous driving research, despite the resource intensity of obtaining representative real world data. Existing selfdriving datasets are limited in the scale and variation of the environments they capture, even though generalization within and between operating regions is crucial to the overall viability of the technology. In an effort to help align the research community's contributions with real-world selfdriving problems, we introduce a new large-scale, high quality, diverse dataset. Our new dataset consists of 1150 scenes that each span 20 seconds, consisting of well synchronized and calibrated high quality LiDAR and camera data captured across a range of urban and suburban geographies. It is 15x more diverse than the largest cam-era+LiDAR dataset available based on our proposed geographical coverage metric. We exhaustively annotated this data with 2D (camera image) and 3D (LiDAR) bounding boxes, with consistent identifiers across frames. Finally, we provide strong baselines for 2D as well as 3D detection and tracking tasks. We further study the effects of dataset size and generalization across geographies on 3D detection methods. Find data, code and more up-to-date information at http://www.waymo.com/open.
translated by 谷歌翻译
对人类对象相互作用的理解在第一人称愿景(FPV)中至关重要。遵循相机佩戴者操纵的对象的视觉跟踪算法可以提供有效的信息,以有效地建模此类相互作用。在过去的几年中,计算机视觉社区已大大提高了各种目标对象和场景的跟踪算法的性能。尽管以前有几次尝试在FPV域中利用跟踪器,但仍缺少对最先进跟踪器的性能的有条理分析。这项研究差距提出了一个问题,即应使用当前的解决方案``现成''还是应进行更多特定领域的研究。本文旨在为此类问题提供答案。我们介绍了FPV中单个对象跟踪的首次系统研究。我们的研究广泛分析了42个算法的性能,包括通用对象跟踪器和基线FPV特定跟踪器。分析是通过关注FPV设置的不同方面,引入新的绩效指标以及与FPV特定任务有关的。这项研究是通过引入Trek-150(由150个密集注释的视频序列组成的新型基准数据集)来实现的。我们的结果表明,FPV中的对象跟踪对当前的视觉跟踪器构成了新的挑战。我们强调了导致这种行为的因素,并指出了可能的研究方向。尽管遇到了困难,但我们证明了跟踪器为需要短期对象跟踪的FPV下游任务带来好处。我们预计,随着新的和FPV特定的方法学会得到研究,通用对象跟踪将在FPV中受欢迎。
translated by 谷歌翻译
本文介绍了Omnicity,这是一种从多层次和多视图图像中了解无所不能的城市理解的新数据集。更确切地说,Omnicity包含多视图的卫星图像以及街道级全景图和单视图图像,构成了超过100k像素的注释图像,这些图像是从纽约市的25k Geo-Locations中良好的一致性和收集的。为了减轻大量像素的注释努力,我们提出了一个有效的街景图像注释管道,该管道利用了卫星视图的现有标签地图以及不同观点之间的转换关系(卫星,Panorama和Mono-View)。有了新的Omnicity数据集,我们为各种任务提供基准,包括构建足迹提取,高度估计以及构建平面/实例/细粒细分。我们还分析了视图对每个任务的影响,不同模型的性能,现有方法的局限性等。与现有的多层次和多视图基准相比,我们的Omnicity包含更多具有更丰富注释类型和更丰富的图像更多的视图,提供了从最先进的模型获得的更多基线结果,并为街道级全景图像中的细粒度建筑实例细分介绍了一项新颖的任务。此外,Omnicity为现有任务提供了新的问题设置,例如跨视图匹配,合成,分割,检测等,并促进开发新方法,以了解大规模的城市理解,重建和仿真。 Omnicity数据集以及基准将在https://city-super.github.io/omnicity上找到。
translated by 谷歌翻译
Existing image classification datasets used in computer vision tend to have a uniform distribution of images across object categories. In contrast, the natural world is heavily imbalanced, as some species are more abundant and easier to photograph than others. To encourage further progress in challenging real world conditions we present the iNaturalist species classification and detection dataset, consisting of 859,000 images from over 5,000 different species of plants and animals. It features visually similar species, captured in a wide variety of situations, from all over the world. Images were collected with different camera types, have varying image quality, feature a large class imbalance, and have been verified by multiple citizen scientists. We discuss the collection of the dataset and present extensive baseline experiments using state-of-the-art computer vision classification and detection models. Results show that current nonensemble based methods achieve only 67% top one classification accuracy, illustrating the difficulty of the dataset. Specifically, we observe poor results for classes with small numbers of training examples suggesting more attention is needed in low-shot learning.
translated by 谷歌翻译
计算机视觉在智能运输系统(ITS)和交通监视中发挥了重要作用。除了快速增长的自动化车辆和拥挤的城市外,通过实施深层神经网络的实施,可以使用视频监视基础架构进行自动和高级交通管理系统(ATM)。在这项研究中,我们为实时交通监控提供了一个实用的平台,包括3D车辆/行人检测,速度检测,轨迹估算,拥塞检测以及监视车辆和行人的相互作用,都使用单个CCTV交通摄像头。我们适应了定制的Yolov5深神经网络模型,用于车辆/行人检测和增强的排序跟踪算法。还开发了基于混合卫星的基于混合卫星的逆透视图(SG-IPM)方法,用于摄像机自动校准,从而导致准确的3D对象检测和可视化。我们还根据短期和长期的时间视频数据流开发了层次结构的交通建模解决方案,以了解脆弱道路使用者的交通流量,瓶颈和危险景点。关于现实世界情景和与最先进的比较的几项实验是使用各种交通监控数据集进行的,包括从高速公路,交叉路口和城市地区收集的MIO-TCD,UA-DETRAC和GRAM-RTM,在不同的照明和城市地区天气状况。
translated by 谷歌翻译
The PASCAL Visual Object Classes (VOC) challenge is a benchmark in visual object category recognition and detection, providing the vision and machine learning communities with a standard dataset of images and annotation, and standard evaluation procedures. Organised annually from 2005 to present, the challenge and its associated dataset has become accepted as the benchmark for object detection.This paper describes the dataset and evaluation procedure. We review the state-of-the-art in evaluated methods for both classification and detection, analyse whether the methods are statistically different, what they are learning from the images (e.g. the object or its context), and what the methods find easy or confuse. The paper concludes with lessons learnt in the three year history of the challenge, and proposes directions for future improvement and extension.
translated by 谷歌翻译
航空图像中的微小对象检测(TOD)是具有挑战性的,因为一个小物体只包含几个像素。最先进的对象探测器由于缺乏判别特征的监督而无法为微小对象提供令人满意的结果。我们的主要观察结果是,联合度量(IOU)及其扩展的相交对微小物体的位置偏差非常敏感,这在基于锚固的探测器中使用时会大大恶化标签分配的质量。为了解决这个问题,我们提出了一种新的评估度量标准,称为标准化的Wasserstein距离(NWD)和一个新的基于排名的分配(RKA)策略,以进行微小对象检测。提出的NWD-RKA策略可以轻松地嵌入到各种基于锚的探测器中,以取代标准的基于阈值的检测器,从而大大改善了标签分配并为网络培训提供了足够的监督信息。在四个数据集中测试,NWD-RKA可以始终如一地提高微小的对象检测性能。此外,在空中图像(AI-TOD)数据集中观察到显着的嘈杂标签,我们有动力将其重新标记并释放AI-TOD-V2及其相应的基准。在AI-TOD-V2中,丢失的注释和位置错误问题得到了大大减轻,从而促进了更可靠的培训和验证过程。将NWD-RKA嵌入探测器中,检测性能比AI-TOD-V2上的最先进竞争对手提高了4.3个AP点。数据集,代码和更多可视化可在以下网址提供:https://chasel-tsui.g​​ithub.io/ai/ai-tod-v2/
translated by 谷歌翻译
实时机器学习检测算法通常在自动驾驶汽车技术中发现,并依赖优质数据集。这些算法在日常条件以及强烈的阳光下都能正常工作。报告表明,眩光是撞车事故最突出的两个最突出的原因之一。但是,现有的数据集,例如LISA和德国交通标志识别基准,根本不反映Sun Glare的存在。本文介绍了眩光交通标志数据集:在阳光下重大视觉干扰下,具有基于美国的交通标志的图像集合。眩光包含2,157张带有阳光眩光的交通标志图像,从33个美国道路录像带中拉出。它为广泛使用的Lisa流量标志数据集提供了必不可少的丰富。我们的实验研究表明,尽管几种最先进的基线方法在没有太阳眩光的情况下对交通符号数据集进行了训练和测试,但在对眩光进行测试时,它们遭受了极大的痛苦(例如,9%至21%的平均图范围为9%至21%。 ,它明显低于LISA数据集上的性能)。我们还注意到,当对Sun Glare中的交通标志图像进行培训时,当前的架构具有更好的检测准确性(例如,主流算法平均42%的平均地图增益)。
translated by 谷歌翻译
自主驾驶的当代深度学习对象检测方法通常会假定前缀类别的共同交通参与者,例如行人和汽车。大多数现有的探测器无法检测到罕见的物体和拐角案例(例如,越过街道的狗),这可能会导致某些情况下发生严重的事故,从而使真实世界应用可靠的自动驾驶不确定。阻碍了真正可靠的自动驾驶系统发展的主要原因是缺乏评估对象探测器在角案例上的性能的公共数据集。因此,我们介绍了一个名为CODA的具有挑战性的数据集,该数据集揭示了基于视力的检测器的关键问题。该数据集由1500个精心选择的现实世界驾驶场景组成,每个场景平均包含四个对象级角案例(平均),涵盖30多个对象类别。在CODA上,在大型自动驾驶数据集中训练的标准对象探测器的性能显着下降到3月的12.8%。此外,我们试验了最新的开放世界对象检测器,发现它也无法可靠地识别尾声中的新对象,这表明对自主驾驶的强大感知系统可能远离触及。我们希望我们的CODA数据集有助于对现实世界自动驾驶的可靠检测进行进一步的研究。我们的数据集将在https://coda-dataset.github.io上发布。
translated by 谷歌翻译
Robust detection and tracking of objects is crucial for the deployment of autonomous vehicle technology. Image based benchmark datasets have driven development in computer vision tasks such as object detection, tracking and segmentation of agents in the environment. Most autonomous vehicles, however, carry a combination of cameras and range sensors such as lidar and radar. As machine learning based methods for detection and tracking become more prevalent, there is a need to train and evaluate such methods on datasets containing range sensor data along with images. In this work we present nuTonomy scenes (nuScenes), the first dataset to carry the full autonomous vehicle sensor suite: 6 cameras, 5 radars and 1 lidar, all with full 360 degree field of view. nuScenes comprises 1000 scenes, each 20s long and fully annotated with 3D bounding boxes for 23 classes and 8 attributes. It has 7x as many annotations and 100x as many images as the pioneering KITTI dataset. We define novel 3D detection and tracking metrics. We also provide careful dataset analysis as well as baselines for lidar and image based detection and tracking. Data, development kit and more information are available online 1 .
translated by 谷歌翻译