带有变异自动编码器(VAE)的学习分解表示通常归因于损失的正则化部分。在这项工作中,我们强调了数据与损失的重建项之间的相互作用,这是VAE中解散的主要贡献者。我们注意到,标准化的基准数据集的构建方式有利于学习似乎是分解的表示形式。我们设计了一个直观的对抗数据集,该数据集利用这种机制破坏了现有的最新分解框架。最后,我们提供了一种解决方案,可以通过修改重建损失来实现分离,从而影响VAES如何感知数据点之间的距离。
translated by 谷歌翻译
$ \ beta $ -vae是对变形的自身额外转换器的后续技术,提出了在VAE损失中的KL分歧项的特殊加权,以获得解除戒备的表示。即使在玩具数据集和有意义的情况下,甚至在玩具数据集上也是脆弱的学习,难以找到的难以找到的。在这里,我们调查原来的$ \β$ -VAE纸,并向先前获得的结果添加证据表明其缺乏可重复性。我们还进一步扩展了模型的实验,并在分析中包括进一步更复杂的数据集。我们还为$ \β$ -VAE模型实施了FID评分度量,并得出了对所获得的结果的定性分析。我们结束了关于可能进行的未来调查的简要讨论,以增加对索赔的更具稳健性。
translated by 谷歌翻译
The key idea behind the unsupervised learning of disentangled representations is that real-world data is generated by a few explanatory factors of variation which can be recovered by unsupervised learning algorithms. In this paper, we provide a sober look at recent progress in the field and challenge some common assumptions. We first theoretically show that the unsupervised learning of disentangled representations is fundamentally impossible without inductive biases on both the models and the data. Then, we train more than 12 000 models covering most prominent methods and evaluation metrics in a reproducible large-scale experimental study on seven different data sets. We observe that while the different methods successfully enforce properties "encouraged" by the corresponding losses, well-disentangled models seemingly cannot be identified without supervision. Furthermore, increased disentanglement does not seem to lead to a decreased sample complexity of learning for downstream tasks. Our results suggest that future work on disentanglement learning should be explicit about the role of inductive biases and (implicit) supervision, investigate concrete benefits of enforcing disentanglement of the learned representations, and consider a reproducible experimental setup covering several data sets.
translated by 谷歌翻译
We define and address the problem of unsupervised learning of disentangled representations on data generated from independent factors of variation. We propose FactorVAE, a method that disentangles by encouraging the distribution of representations to be factorial and hence independent across the dimensions. We show that it improves upon β-VAE by providing a better trade-off between disentanglement and reconstruction quality. Moreover, we highlight the problems of a commonly used disentanglement metric and introduce a new metric that does not suffer from them.
translated by 谷歌翻译
变化自动编码器(VAE)最近已用于对复杂密度分布的无监督分离学习。存在许多变体,以鼓励潜在空间中的分解,同时改善重建。但是,在达到极低的重建误差和高度分离得分之间,没有人同时管理权衡。我们提出了一个普遍的框架,可以在有限的优化下应对这一挑战,并证明它在平衡重建时,它优于现有模型的最先进模型。我们介绍了三个可控的拉格朗日超级参数,以控制重建损失,KL差异损失和相关度量。我们证明,重建网络中的信息最大化等于在合理假设和约束放松下摊销过程中的信息最大化。
translated by 谷歌翻译
我们提出了一种自我监督的方法,以解除高维数据变化的因素,该因素不依赖于基本变化概况的先验知识(例如,没有关于要提取单个潜在变量的数量或分布的假设)。在我们称为nashae的方法中,通过促进从所有其他编码元素中恢复的每个编码元素和恢复的元素的信息之间的差异,在标准自动编码器(AE)的低维潜在空间中完成了高维的特征分离。通过将其作为AE和回归网络合奏之间的Minmax游戏来有效地促进了分解,从而估算了一个元素,该元素以对所有其他元素的观察为条件。我们将我们的方法与使用现有的分离指标进行定量比较。此外,我们表明Nashae具有提高的可靠性和增加的能力来捕获学习潜在表示中的显着数据特征。
translated by 谷歌翻译
A grand goal in deep learning research is to learn representations capable of generalizing across distribution shifts. Disentanglement is one promising direction aimed at aligning a models representations with the underlying factors generating the data (e.g. color or background). Existing disentanglement methods, however, rely on an often unrealistic assumption: that factors are statistically independent. In reality, factors (like object color and shape) are correlated. To address this limitation, we propose a relaxed disentanglement criterion - the Hausdorff Factorized Support (HFS) criterion - that encourages a factorized support, rather than a factorial distribution, by minimizing a Hausdorff distance. This allows for arbitrary distributions of the factors over their support, including correlations between them. We show that the use of HFS consistently facilitates disentanglement and recovery of ground-truth factors across a variety of correlation settings and benchmarks, even under severe training correlations and correlation shifts, with in parts over +60% in relative improvement over existing disentanglement methods. In addition, we find that leveraging HFS for representation learning can even facilitate transfer to downstream tasks such as classification under distribution shifts. We hope our original approach and positive empirical results inspire further progress on the open problem of robust generalization.
translated by 谷歌翻译
表示解开是表示有利于各种下游任务的代表性学习的重要目标。为了实现这一目标,已经开发了许多无监督的学习表示方法。但是,事实证明,没有使用任何监督信号的培训过程就不足以进行分解表示。因此,我们提出了一种新型的弱监督训练方法,称为SW-VAE,该方法通过使用数据集的生成因子,将成对的输入观测值作为监督信号。此外,我们引入了策略,以逐渐增加训练过程中的学习难度,以使训练过程平滑。如多个数据集所示,我们的模型对表示解散任务的最新方法(SOTA)方法显示出显着改善。
translated by 谷歌翻译
Disonandlement被假设有利于许多下游任务。然而,学习解除不诚位表示的共同假设是数据生成因子在统计上独立。由于目前的方法几乎单独评估在这种理想的假设所在的玩具数据集上,我们在分层设置中调查它们的性能,其现实世界数据的相关特征。在这项工作中,我们介绍了一个具有分层结构的地面实际生成因子的数据集。我们使用这部小型数据集来评估最先进的自动统计文件的解剖模型的性能,并观察到分层模型在分层排列因子的解剖学方面通常优于单层VAE。
translated by 谷歌翻译
解决视觉推理测试的计算学习方法,例如Raven的渐进式矩阵(RPM),非常取决于识别测试中使用的视觉概念(即表示)以及基于这些概念(即,推理)。然而,学习表示和推理是一项具有挑战性且不足的任务,经常以舞台的方式(首先表示,然后推理)接近。在这项工作中,我们提出了一个端到端的联合代表性学习框架,该框架利用了弱的归纳偏见形式来共同改善这两项任务。具体而言,我们引入了RPMS,GM-RPM的一般生成图形模型,并将其应用于解决推理测试。我们使用基于GM-RPM原理的基于基于的抽象推理网络(DAREN)的新型学习框架来完成此操作。我们对Daren进行了多个基准数据集的经验评估。 Daren在推理和分离任务上都表现出对最先进的模型(SOTA)模型的一致改进。这证明了分离的潜在表示与解决抽象视觉推理任务的能力之间的密切相关性。
translated by 谷歌翻译
以无监督的方式从高维领域提取生成参数的能力是计算物理学中的非常理想尚未实现的目标。这项工作探讨了用于非线性尺寸降低的变形Autiachoders(VAES),其特定目的是{\ EM解散}的特定目标,以识别生成数据的独立物理参数。解除戒开的分解是可解释的,并且可以转移到包括生成建模,设计优化和概率减少阶级型建模的各种任务。这项工作的重大重点是使用VAE来表征解剖学,同时最小地修改经典的VAE损失功能(即证据下限)以保持高重建精度。损耗景观的特点是过度正常的局部最小值,其环绕所需的解决方案。我们通过在模型多孔流量问题中并列在模拟潜在分布和真正的生成因子中,说明了分解和纠缠符号之间的比较。展示了等级前瞻,促进了解除不诚实的表现的学习。在用旋转不变的前沿训练时,正则化损失不受潜在的旋转影响,从而学习非旋转不变的前锋有助于捕获生成因子的性质,改善解剖学。最后,表明通过标记少量样本($ O(1 \%)$)来实现半监督学习 - 导致可以一致地学习的准确脱屑潜在的潜在表示。
translated by 谷歌翻译
基于线性对称性的分解(LSBD)的定义正式化了线性分解表示的概念,但目前尚无量化LSBD的指标。这样的度量对于评估LSBD方法至关重要,并与以前的分解理解相比。我们建议$ \ mathcal {d} _ \ mathrm {lsbd} $,一种数学上的声音指标,用于量化LSBD,并为$ \ mathrm {so}(so}(2)$ groups提供了实践实现。此外,从这个指标中,我们得出了LSBD-VAE,这是一种学习LSBD表示的半监督方法。我们通过证明(1)基于VAE的常见分解方法不学习LSBD表示,(2)LSBD-VAE以及其他最近的方法可以学习LSBD表示,仅需要有限的转换监督,我们可以在转换中学习LSBD表示,从而证明了我们指标的实用性。(3)LSBD表示也实现了现有的分离指标表达的各种理想属性。
translated by 谷歌翻译
代表学习者认为,解开变异的因素已经证明是在解决各种现实世界的关切方面是重要的,如公平和可意识。最初由具有独立假设的无监督模型组成,最近,监督和相关特征较弱,但没有生成过程的因果关系。相比之下,我们在原因生成过程的制度下工作,因为生成因子是独立的,或者可能被一组观察或未观察到的混乱困惑。我们通过解散因果过程的概念对解开表示的分析。我们激励对新指标和数据集进行研究,以研究因果解剖和提出两个评估指标和数据集。我们展示了我们的指标捕获了解开了因果过程的探索。最后,我们利用我们的指标和数据集对艺术艺术状态的实证研究进行了脱扣代表学习者,以从因果角度来评估它们。
translated by 谷歌翻译
近年来,由于其对复杂分布进行建模的能力,深层生成模型引起了越来越多的兴趣。在这些模型中,变异自动编码器已被证明是计算有效的,并且在多个领域中产生了令人印象深刻的结果。在这一突破之后,为了改善原始出版物而进行了广泛的研究,从而导致各种不同的VAE模型响应不同的任务。在本文中,我们介绍了Pythae,这是一个多功能的开源Python库,既可以提供统一的实现和专用框架,允许直接,可重现且可靠地使用生成自动编码器模型。然后,我们建议使用此库来执行案例研究基准测试标准,在其中我们介绍并比较了19个生成自动编码器模型,代表了下游任务的一些主要改进,例如图像重建,生成,分类,聚类,聚类和插值。可以在https://github.com/clementchadebec/benchmark_vae上找到开源库。
translated by 谷歌翻译
从视觉观察中了解动态系统的潜在因果因素被认为是对复杂环境中推理的推理的关键步骤。在本文中,我们提出了Citris,这是一种变异自动编码器框架,从图像的时间序列中学习因果表示,其中潜在的因果因素可能已被干预。与最近的文献相反,Citris利用了时间性和观察干预目标,以鉴定标量和多维因果因素,例如3D旋转角度。此外,通过引入归一化流,可以轻松扩展柑橘,以利用和删除已验证的自动编码器获得的删除表示形式。在标量因果因素上扩展了先前的结果,我们在更一般的环境中证明了可识别性,其中仅因果因素的某些成分受干预措施影响。在对3D渲染图像序列的实验中,柑橘类似于恢复基本因果变量的先前方法。此外,使用预验证的自动编码器,Citris甚至可以概括为因果因素的实例化,从而在SIM到现实的概括中开放了未来的研究领域,以进行因果关系学习。
translated by 谷歌翻译
Disentangement是代表学习的有用财产,其提高了种子自动编码器(VAE),生成对抗模型等变形式自动编码器(VAE),生成的对抗模型及其许多变体的可解释性。通常在这种模型中,脱离性能的增加是具有发电质量的交易。在潜空间模型的背景下,这项工作提出了一种表示学习框架,通过鼓励正交的变化方向明确地促进解剖。所提出的目标是自动编码器错误项的总和以及特征空间中的主成分分析重建错误。这具有对具有在Stiefel歧管上的特征向量矩阵的限制内核机器的解释。我们的分析表明,这种结构通过将潜在空间中的主路线与数据空间的正交变化的方向匹配来促进解剖。在交替的最小化方案中,我们使用Cayley ADAM算法 - Stiefel歧管的随机优化方法以及ADAM优化器。我们的理论讨论和各种实验表明,拟议的模型在代质量和解除戒备的代表学习方面提高了许多VAE变体。
translated by 谷歌翻译
给定包含具有不同特征的不同对象的图像数据集,例如形状,大小,旋转和X-y位置;以及变异自动编码器(VAE);在VAE的隐藏空间向量中创建这些功能的分解编码是本文感兴趣的任务。DSPRITE数据集为本研究中所需的实验提供了所需的功能。在训练VAE与生成对抗网络(GAN)结合后,隐藏矢量的每个维度都被破坏,以探索每个维度中的分离。请注意,GAN用于提高输出图像重建的质量。
translated by 谷歌翻译
We decompose the evidence lower bound to show the existence of a term measuring the total correlation between latent variables. We use this to motivate the β-TCVAE (Total Correlation Variational Autoencoder) algorithm, a refinement and plug-in replacement of the β-VAE for learning disentangled representations, requiring no additional hyperparameters during training. We further propose a principled classifier-free measure of disentanglement called the mutual information gap (MIG). We perform extensive quantitative and qualitative experiments, in both restricted and non-restricted settings, and show a strong relation between total correlation and disentanglement, when the model is trained using our framework.
translated by 谷歌翻译
本文提出了在适当的监督信息下进行分解的生成因果代表(亲爱的)学习方法。与实施潜在变量独立性的现有分解方法不同,我们考虑了一种基本利益因素可以因果关系相关的一般情况。我们表明,即使在监督下,先前具有独立先验的方法也无法解散因果关系。在这一发现的激励下,我们提出了一种称为DEAR的新的解开学习方法,该方法可以使因果可控的产生和因果代表学习。这种新公式的关键要素是使用结构性因果模型(SCM)作为双向生成模型的先验分布。然后,使用合适的GAN算法与发电机和编码器共同训练了先验,并与有关地面真相因子及其基本因果结构的监督信息合并。我们提供了有关该方法的可识别性和渐近收敛性的理论理由。我们对合成和真实数据集进行了广泛的实验,以证明DEAR在因果可控生成中的有效性,以及在样本效率和分布鲁棒性方面,学到的表示表示对下游任务的好处。
translated by 谷歌翻译
保留数据中相似性的自动编码器模型是表示学习中的流行工具。在本文中,我们介绍了几种自动编码器模型,这些模型在从数据空间到潜在空间的映射时可以保留本地距离。我们使用局部距离保留损失,该损失基于连续的K-Nearthiend邻居图,该图已知可以同时捕获所有尺度的拓扑特征。为了提高培训绩效,我们将学习作为约束优化问题,并保存本地距离,作为主要目标和重建精度作为约束。我们将这种方法推广到分层变分自动编码器,从而学习具有几何一致的潜在和数据空间的生成模型。我们的方法在几个标准数据集和评估指标上提供了最先进的性能。
translated by 谷歌翻译