Recent advances in deep learning have led to the development of models approaching human level of accuracy. However, healthcare remains an area lacking in widespread adoption. The safety-critical nature of healthcare results in a natural reticence to put these black-box deep learning models into practice. In this paper, we explore interpretable methods for a clinical decision support system, sleep staging, based on physiological signals such as EEG, EOG, and EMG. A recent work has shown sleep staging using simple models and an exhaustive set of features can perform nearly as well as deep learning approaches but only for certain datasets. Moreover, the utility of these features from a clinical standpoint is unclear. On the other hand, the proposed framework, NormIntSleep shows that by representing deep learning embeddings using normalized features, great performance can be obtained across different datasets. NormIntSleep performs 4.5% better than the exhaustive feature-based approach and 1.5% better than other representation learning approaches. An empirical comparison between the utility of the interpretations of these models highlights the improved alignment with clinical expectations when performance is traded-off slightly.
translated by 谷歌翻译
最近基于深度学习的临床决策支持系统的准确性是有希望的。但是,缺乏模型可解释性仍然是医疗保健中人工智能广泛采用的障碍。使用睡眠作为案例研究,我们提出了一种可推广的方法,将临床解释性与黑盒深度学习得出的高精度相结合。多聚词(PSG)的临床医生确定的睡眠阶段仍然是评估睡眠质量的金标准。但是,专家的PSG手册注释既昂贵又过时。我们建议使用嵌入式,规则和功能来读取PSG的农奴,可解释的睡眠分期。农奴通过从AASM手册中得出的有意义的特征来解释分类的睡眠阶段,用于睡眠和相关事件的评分。在农奴中,从卷积和复发性神经网络的混合体获得的嵌入被转移到可解释的特征空间。这些代表性的可解释功能用于训练简单的模型,例如浅决策树进行分类。模型结果将在两个公开可用的数据集上进行验证。农奴超过了可解释的睡眠分期的当前最新时间。 Serf使用梯度增压树作为分类器,在当前最新的黑盒模型的2%以内,获得了0.766 $ \ kappa $和0.870 AUC-ROC。
translated by 谷歌翻译
在过去的几年中,自动睡眠评分的研究主要集中在开发日益复杂的深度学习体系结构上。但是,最近,这些方法仅实现了边际改进,通常以需要更多数据和更昂贵的培训程序为代价。尽管所有这些努力及其令人满意的表现,但在临床背景下,自动睡眠期临时解决方案并未被广泛采用。我们认为,由于很难训练,部署和繁殖,大多数对睡眠评分的深度学习解决方案在现实世界中的适用性受到限制。此外,这些解决方案缺乏可解释性和透明度,这通常是提高采用率的关键。在这项工作中,我们使用经典的机器学习来重新审视睡眠阶段分类的问题。结果表明,通过传统的机器学习管道可以实现最新的性能,该管道包括预处理,功能提取和简单的机器学习模型。特别是,我们分析了线性模型和非线性(梯度提升)模型的性能。我们的方法超过了两个公共数据集上的最新方法(使用相同的数据):Sleep--EDF SC-20(MF1 0.810)和Sleep-eDF ST(MF1 0.795),同时在Sleep-eDF上取得了竞争成果SC-78(MF1 0.775)和质量SS3(MF1 0.817)。我们表明,对于睡眠阶段评分任务,工程特征向量的表现力与深度学习模型的内部学表现相当。该观察结果为临床采用打开了大门,因为代表性功能向量允许利用传统机器学习模型的可解释性和成功记录。
translated by 谷歌翻译
本文提出了一个新颖的框架,以根据权威的睡眠医学指导自动捕获人睡眠的脑电图(EEG)信号的时间频率。该框架由两个部分组成:第一部分通过将输入EEG频谱图将其划分为一系列时频贴片来提取信息特征。第二部分是由基于注意力的体系结构有效地搜索分配的时频贴片和并行睡眠阶段定义因素之间的相关性构成的。拟议的管道在Sleep Heart Health研究数据集上进行了验证,其阶段唤醒,N2和N3的新最新结果获得了相应的F1分数为0.93、0.88和0.87,仅使用EEG信号。该提出的方法还具有高评分者间可靠性为0.80 kappa。我们还可以看到睡眠分期决策与提出方法提取的特征之间的对应关系,为我们的模型提供了强大的解释性。
translated by 谷歌翻译
近年来,深度学习显示了广泛区域的潜力和效率,包括计算机视觉,图像和信号处理。然而,由于缺乏算法决策和结果的解释性,用户应用程序仍然存在转化挑战。这个黑匣子问题对于高风险应用程序(例如与医疗相关的决策制定)尤其有问题。当前的研究目标是设计一个可解释的深度学习系统,用于对脑电图的时间序列分类(EEG)进行睡眠阶段评分,以此作为设计透明系统的一步。我们已经开发了一个可解释的深神经网络,该网络包括基于内核的层,该层是基于人类专家在视觉分析记录的视觉分析中用于睡眠评分的一组原理。将基于内核的卷积层定义并用作系统的第一层,并可用于用户解释。训练有素的系统及其结果从脑电图信号的微观结构(例如训练的内核)以及每个内核对检测到的阶段的效果,宏观结构(例如阶段之间的过渡)中解释了四个级别。拟议的系统表现出比先前的研究更大的性能,而解释的结果表明,该系统学习了与专家知识一致的信息。
translated by 谷歌翻译
准确的睡眠阶段分类对于睡眠健康评估很重要。近年来,已经开发了几种基于深度学习和机器学习的睡眠阶段算法,并且在人类注释方面取得了表现。尽管性能提高,但最深入学习算法的局限性是其黑盒行为,它限制了它们在临床环境中的使用。在这里,我们提出了跨模式变压器,这是一种基于变压器的睡眠阶段分类的方法。我们的模型通过最先进的方法实现了竞争性能,并通过利用注意模块的可解释性方面消除了深度学习模型的黑盒行为。提出的跨模式变压器由一种新型的跨模式变压器编码器结构以及多尺度的一维卷积神经网络组成,用于自动表示学习。基于此设计的我们的睡眠阶段分类器能够以与最先进的方法相同或更好地达到睡眠阶段分类性能,以及可解释性,参数数量减少了四倍,并且比较培训时间减少了。到当前的最新。我们的代码可从https://github.com/jathurshan0330/cross-modal-transformer获得。
translated by 谷歌翻译
Seizure type identification is essential for the treatment and management of epileptic patients. However, it is a difficult process known to be time consuming and labor intensive. Automated diagnosis systems, with the advancement of machine learning algorithms, have the potential to accelerate the classification process, alert patients, and support physicians in making quick and accurate decisions. In this paper, we present a novel multi-path seizure-type classification deep learning network (MP-SeizNet), consisting of a convolutional neural network (CNN) and a bidirectional long short-term memory neural network (Bi-LSTM) with an attention mechanism. The objective of this study was to classify specific types of seizures, including complex partial, simple partial, absence, tonic, and tonic-clonic seizures, using only electroencephalogram (EEG) data. The EEG data is fed to our proposed model in two different representations. The CNN was fed with wavelet-based features extracted from the EEG signals, while the Bi-LSTM was fed with raw EEG signals to let our MP-SeizNet jointly learns from different representations of seizure data for more accurate information learning. The proposed MP-SeizNet was evaluated using the largest available EEG epilepsy database, the Temple University Hospital EEG Seizure Corpus, TUSZ v1.5.2. We evaluated our proposed model across different patient data using three-fold cross-validation and across seizure data using five-fold cross-validation, achieving F1 scores of 87.6% and 98.1%, respectively.
translated by 谷歌翻译
目的:开发和验证一种自动化方法,用于对新生儿重症监护病房中睡眠状态波动的床旁监测。方法:基于深度学习的算法是使用30个近期新生儿的长期(a)脑电图监测的53个EEG录音设计和训练的。使用来自30个多摄影记录的外部数据集对结果进行了验证。除了训练和验证单个脑电图通道安静的睡眠探测器外,我们还构建了睡眠状态趋势(SST),这是一种可视化分类器输出的床旁准备手段。结果:训练数据中安静的睡眠检测的准确性为90%,在4电极记录中获得的所有双极派生中,精度是可比的(85-86%)。该算法很好地概括了外部数据集,尽管信号推导不同,但仍显示81%的总体精度。 SST允许对分类器输出的直观,清晰可视化。结论:可以从单个EEG通道的高保真度中检测到睡眠状态的波动,并且可以将结果可视化为床边监视器中透明和直观的趋势。意义:睡眠状态趋势(SST)可以为护理人员提供对睡眠状态波动及其周期性的实时视图。
translated by 谷歌翻译
尽管最近对成人自动睡眠分期进行了巨大进展,但目前是未知的,如果最先进的算法概括为儿科人群,这在过夜多核心摄影(PSG)中显示出独特的特征。为了回答这个问题,在这项工作中,我们对儿科自动睡眠分期的最先进的深层学习方法进行了大规模比较研究。采用各种具有发散特征的六种不同的深神经网络的选择来评估超过1,200名儿童的样品,横跨宽度的阻塞性睡眠呼吸暂停(OSA)严重程度。我们的实验结果表明,在新科目评估时自动儿科睡眠滞高器的个性表现相当于在成人报告的专家级。将六个级别与集合模型相结合,进一步提高了暂存精度,达到了87.7%的整体准确性,一个0.837的Cohen的Kappa,在新科目评估时,单通道EEG的宏观F1分数为84.2%。当使用双通道EEG $ \ CDOT $ EOT时,达到88.8%的准确性,即0.852的精度,宏观F1分数为85.8%时,该性能进一步提高。同时,集合模型导致预测性不确定性降低。结果还表明,当训练和测试数据分开和临床干预后7个月记录7个月时,研究了算法及其集合对于概念漂移是强大的。详细分析进一步展示了自动分级彼此之间的“几乎完美”协议及其在分期错误上的类似模式。
translated by 谷歌翻译
AASM准则是为了有一种常用的方法,旨在标准化睡眠评分程序的数十年努力的结果。该指南涵盖了从技术/数字规格(例如,推荐的EEG推导)到相应的详细睡眠评分规则到年龄的几个方面。在睡眠评分自动化的背景下,与许多其他技术相比,深度学习表现出更好的性能。通常,临床专业知识和官方准则对于支持自动睡眠评分算法在解决任务时至关重要。在本文中,我们表明,基于深度学习的睡眠评分算法可能不需要充分利用临床知识或严格遵循AASM准则。具体而言,我们证明了U-Sleep是一种最先进的睡眠评分算法,即使使用临床非申请或非规定派生,也可以解决得分任务,即使无需利用有关有关的信息,也无需利用有关有关的信息。受试者的年代年龄。我们最终加强了一个众所周知的发现,即使用来自多个数据中心的数据始终导致与单个队列上的培训相比,可以使性能更好。确实,我们表明,即使增加了单个数据队列的大小和异质性,后者仍然有效。在我们的所有实验中,我们使用了来自13个不同临床研究的28528多个多摄影研究研究。
translated by 谷歌翻译
在神经科学领域,脑活动分析总是被认为是一个重要领域。精神分裂症(SZ)是一种严重影响世界各地人民的思想,行为和情感的大脑障碍。在Sz检测中被证明是一种有效的生物标志物的脑电图(EEG)。由于其非线性结构,EEG是非线性时间序列信号,并利用其进行调查,这是对其的影响。本文旨在利用深层学习方法提高基于EEG基于SZ检测的性能。已经提出了一种新的混合深度学习模型(精神分裂症混合神经网络),已经提出了卷积神经网络(CNN)和长短期存储器(LSTM)的组合。 CNN网络用于本地特征提取,LSTM已用于分类。所提出的模型仅与CNN,仅限LSTM和基于机器学习的模型进行了比较。已经在两个不同的数据集上进行了评估所有模型,其中数据集1由19个科目和数据集2组成,由16个科目组成。使用不同频带上的各种参数设置并在头皮上使用不同的电极组来进行几个实验。基于所有实验,显然提出的混合模型(SZHNN)与其他现有型号相比,拟议的混合模型(SZHNN)提供了99.9%的最高分类精度。该建议的模型克服了不同频带的影响,甚至没有5个电极显示出91%的更好的精度。该拟议的模型也在智能医疗保健和远程监控应用程序的医疗器互联网上进行评估。
translated by 谷歌翻译
尽管能够隔离视觉数据,但人类花了一些时间来检查一块,更不用说数千或数百万个样本了。深度学习模型在现代计算的帮助下有效地处理了相当大的信息。但是,他们可疑的决策过程引起了相当大的关注。最近的研究已经确定了一种新的方法,可以从EEG信号中提取图像特征,并将其与标准图像特征相结合。这些方法使深度学习模型更容易解释,并且还可以更快地将模型收敛。受最近研究的启发,我们开发了一种编码脑电图信号作为图像的有效方法,以促进使用深度学习模型对大脑信号的更微妙的理解。在此类编码方法中,我们使用两个变体对对应于39个图像类的编码EEG信号对六个受试者的分层数据集的基准精度为70%,这远高于现有工作。与纯净的深度学习方法的准确性稍好相比,我们的图像分类方法具有共同的EEG功能的精度为82%。然而,它证明了该理论的生存能力。
translated by 谷歌翻译
自动睡眠评分对于诊断和治疗睡眠障碍至关重要,并在家庭环境中实现纵向睡眠跟踪。通常,对单渠道脑电图(EEG)进行基于学习的自动睡眠评分是积极研究的,因为困难在睡眠过程中获得多通道信号。但是,由于以下问题,来自原始脑电图信号的学习表示形式挑战:1)与睡眠相关的脑电图模式发生在不同的时间和频率尺度上,2)睡眠阶段共享相似的脑电图模式。为了解决这些问题,我们提出了一个名为Sleepyco的深度学习框架,该框架结合了1)功能金字塔和2)自动睡眠评分的监督对比度学习。对于特征金字塔,我们提出了一个名为sleepyco-backbone的骨干网络,以考虑在不同的时间和频率尺度上的多个特征序列。监督的对比学习允许网络通过最大程度地降低类内部特征之间的距离并同时最大程度地提高阶层间特征之间的距离来提取类别特征。对四个公共数据集的比较分析表明,Sleepyco始终优于基于单渠道EEG的现有框架。广泛的消融实验表明,Sleepyco表现出增强的总体表现,N1和快速眼运动(REM)阶段之间的歧视有了显着改善。
translated by 谷歌翻译
误诊率是医院医疗错误的主要原因之一,影响了美国超过1200万成年人。为了解决误诊的高率,本研究利用4种基于NLP的算法根据非结构化转录报告来确定适当的健康状况。从逻辑回归,随机森林,LSTM和CNNLSTM模型中,CNN-LSTM模型的精度为97.89%,表现最好。我们将该模型打包到了经过身份验证的网络平台中,以便为临床医生提供可访问的援助。总体而言,通过标准化医疗保健诊断和结构转录报告,我们的NLP平台极大地提高了全球医院的临床效率和准确性。
translated by 谷歌翻译
如今,人工智能(AI)已成为临床和远程医疗保健应用程序的基本组成部分,但是最佳性能的AI系统通常太复杂了,无法自我解释。可解释的AI(XAI)技术被定义为揭示系统的预测和决策背后的推理,并且在处理敏感和个人健康数据时,它们变得更加至关重要。值得注意的是,XAI并未在不同的研究领域和数据类型中引起相同的关注,尤其是在医疗保健领域。特别是,许多临床和远程健康应用程序分别基于表格和时间序列数据,而XAI并未在这些数据类型上进行分析,而计算机视觉和自然语言处理(NLP)是参考应用程序。为了提供最适合医疗领域表格和时间序列数据的XAI方法的概述,本文提供了过去5年中文献的审查,说明了生成的解释的类型以及为评估其相关性所提供的努力和质量。具体而言,我们确定临床验证,一致性评估,客观和标准化质量评估以及以人为本的质量评估作为确保最终用户有效解释的关键特征。最后,我们强调了该领域的主要研究挑战以及现有XAI方法的局限性。
translated by 谷歌翻译
临床文本注释(CTN)包含医生的推理过程,以非结构化的自由文本格式编写,他们检查和采访患者。近年来,已经发表了几项研究,这些研究为机器学习的实用性提供了证据,以预测CTN的医生诊断,这是一项称为ICD编码的任务。数据注释很耗时,尤其是在需要一定程度的专业化时,就像医疗数据一样。本文提出了一种以半自我监督的方式增强冰岛CTN的稀疏注释数据集的方法。我们在一小部分带注释的CTN上训练神经网络,并使用它从一组未通畅的CTN中提取临床特征。这些临床特征包括对医生可能会在患者咨询期间找到答案的大约一千个潜在问题的答案。然后,这些功能用于训练分类器以诊断某些类型的疾病。我们报告了对医生的三个数据可用性评估该数据增强方法的评估结果。我们的数据增强方法显示出显着的积极作用,当检查患者和诊断的临床特征时,这会减少。我们建议使用基于不包括考试或测试的临床特征做出决策的系统增强稀缺数据集的方法。
translated by 谷歌翻译
尽管有无数的同伴审查的论文,证明了新颖的人工智能(AI)基于大流行期间的Covid-19挑战的解决方案,但很少有临床影响。人工智能在Covid-19大流行期间的影响因缺乏模型透明度而受到极大的限制。这种系统审查考察了在大流行期间使用可解释的人工智能(Xai)以及如何使用它可以克服现实世界成功的障碍。我们发现,Xai的成功使用可以提高模型性能,灌输信任在最终用户,并提供影响用户决策所需的值。我们将读者介绍给常见的XAI技术,其实用程序以及其应用程序的具体例子。 XAI结果的评估还讨论了最大化AI的临床决策支持系统的价值的重要步骤。我们说明了Xai的古典,现代和潜在的未来趋势,以阐明新颖的XAI技术的演变。最后,我们在最近出版物支持的实验设计过程中提供了建议的清单。潜在解决方案的具体示例也解决了AI解决方案期间的共同挑战。我们希望本次审查可以作为提高未来基于AI的解决方案的临床影响的指导。
translated by 谷歌翻译
目的:提出使用深神经网络(DNN)的新型SSVEP分类方法,提高单通道和用户独立的脑电电脑接口(BCIS)的性能,具有小的数据长度。方法:我们建议与DNN结合使用过滤器组(创建EEG信号的子带分量)。在这种情况下,我们创建了三种不同的模型:经常性的神经网络(FBRNN)分析时域,2D卷积神经网络(FBCNN-2D)处理复谱特征和3D卷积神经网络(FBCNN-3D)分析复杂谱图,我们在本研究中介绍了SSVEP分类的可能输入。我们通过开放数据集培训了我们的神经网络,并构思了它们,以便不需要从最终用户校准:因此,测试主题数据与训练和验证分开。结果:带滤波器银行的DNN超越了类似网络的准确性,在没有相当大的边距(高达4.6%)的情况下,它们甚至更高的边距(高达7.1%)超越了常见的SSVEP分类方法(SVM和FBCCA) 。在使用过滤器银行中的三个DNN中,FBRNN获得了最佳结果,然后是FBCNN-3D,最后由FBCNN-2D获得。结论和意义:滤波器银行允许不同类型的深神经网络,以更有效地分析SSVEP的谐波分量。复谱图比复杂频谱特征和幅度谱进行更多信息,允许FBCNN-3D超越另一个CNN。在具有挑战性的分类问题中获得的平均测试精度(87.3%)和F1分数(0.877)表示施工,经济,快速和低延迟BCIS建设的强大潜力。
translated by 谷歌翻译
睡眠对婴儿,儿童和青少年的健康尤为重要,睡眠评分是准确诊断和治疗潜在的威胁生命状况的第一步。但是,与成人睡眠相比,儿科睡眠在健康的情况下与成人睡眠相比严重研究,并且为成年人开发的睡眠评分算法通常在婴儿身上表现不佳。在这里,我们介绍了最近在标准临床护理期间收集的最近大规模的小儿睡眠研究数据集中的第一个自动睡眠评分结果。我们开发了一个基于变压器的监督学习模型,该模型学会从数百万多通道脑电图(EEG)睡眠时期分类五个睡眠阶段,总体准确性为78%。此外,我们根据患者人口统计学和脑电图通道对模型性能进行了深入的分析。结果表明,对小儿睡眠的机器学习研究的需求日益增长。
translated by 谷歌翻译
这项研究提出了一个多模式的机器学习模型,以预测ICD-10诊断代码。我们开发了单独的机器学习模型,可以处理来自不同模式的数据,包括非结构化文本,半结构化文本和结构化表格数据。我们进一步采用了合奏方法来集成所有模式特异性模型以生成ICD-10代码。还提取了主要证据,以使我们的预测更具说服力和可解释。我们使用医学信息集市进行重症监护III(模拟-III)数据集来验证我们的方法。对于ICD代码预测,我们的表现最佳模型(Micro-F1 = 0.7633,Micro-AUC = 0.9541)显着超过其他基线模型,包括TF-IDF(Micro-F1 = 0.6721,Micro-AUC = 0.7879)和Text-CNN模型(Micro-F1 = 0.6569,Micro-AUC = 0.9235)。为了解释性,我们的方法在文本数据上实现了JACCARD相似性系数(JSC)为0.1806,在表格数据上分别获得了0.3105,训练有素的医生分别达到0.2780和0.5002。
translated by 谷歌翻译