Graph神经网络(GNN)最近已成为使用图的机器学习的主要范式。对GNNS的研究主要集中于消息传递神经网络(MPNNS)的家族。与同构的Weisfeiler-Leman(WL)测试类似,这些模型遵循迭代的邻域聚合过程以更新顶点表示,并通过汇总顶点表示来更新顶点图表。尽管非常成功,但在过去的几年中,对MPNN进行了深入的研究。因此,需要新颖的体系结构,这将使该领域的研究能够脱离MPNN。在本文中,我们提出了一个新的图形神经网络模型,即所谓的$ \ pi $ -gnn,该模型学习了每个图的“软”排列(即双随机)矩阵,从而将所有图形投影到一个共同的矢量空间中。学到的矩阵在输入图的顶点上强加了“软”顺序,并基于此顺序,将邻接矩阵映射到向量中。这些向量可以被送入完全连接或卷积的层,以应对监督的学习任务。在大图的情况下,为了使模型在运行时间和记忆方面更有效,我们进一步放松了双随机矩阵,以使其排列随机矩阵。我们从经验上评估了图形分类和图形回归数据集的模型,并表明它与最新模型达到了性能竞争。
translated by 谷歌翻译
In recent years, graph neural networks (GNNs) have emerged as a promising tool for solving machine learning problems on graphs. Most GNNs are members of the family of message passing neural networks (MPNNs). There is a close connection between these models and the Weisfeiler-Leman (WL) test of isomorphism, an algorithm that can successfully test isomorphism for a broad class of graphs. Recently, much research has focused on measuring the expressive power of GNNs. For instance, it has been shown that standard MPNNs are at most as powerful as WL in terms of distinguishing non-isomorphic graphs. However, these studies have largely ignored the distances between the representations of nodes/graphs which are of paramount importance for learning tasks. In this paper, we define a distance function between nodes which is based on the hierarchy produced by the WL algorithm, and propose a model that learns representations which preserve those distances between nodes. Since the emerging hierarchy corresponds to a tree, to learn these representations, we capitalize on recent advances in the field of hyperbolic neural networks. We empirically evaluate the proposed model on standard node and graph classification datasets where it achieves competitive performance with state-of-the-art models.
translated by 谷歌翻译
在过去十年中,图形内核引起了很多关注,并在结构化数据上发展成为一种快速发展的学习分支。在过去的20年中,该领域发生的相当大的研究活动导致开发数十个图形内核,每个图形内核都对焦于图形的特定结构性质。图形内核已成功地成功地在广泛的域中,从社交网络到生物信息学。本调查的目标是提供图形内核的文献的统一视图。特别是,我们概述了各种图形内核。此外,我们对公共数据集的几个内核进行了实验评估,并提供了比较研究。最后,我们讨论图形内核的关键应用,并概述了一些仍有待解决的挑战。
translated by 谷歌翻译
近年来,基于Weisfeiler-Leman算法的算法和神经架构,是一个众所周知的Graph同构问题的启发式问题,它成为具有图形和关系数据的机器学习的强大工具。在这里,我们全面概述了机器学习设置中的算法的使用,专注于监督的制度。我们讨论了理论背景,展示了如何将其用于监督的图形和节点表示学习,讨论最近的扩展,并概述算法的连接(置换 - )方面的神经结构。此外,我们概述了当前的应用和未来方向,以刺激进一步的研究。
translated by 谷歌翻译
图形内核是历史上最广泛使用的图形分类任务的技术。然而,由于图的手工制作的组合特征,这些方法具有有限的性能。近年来,由于其性能卓越,图形神经网络(GNNS)已成为与下游图形相关任务的最先进的方法。大多数GNN基于消息传递神经网络(MPNN)框架。然而,最近的研究表明,MPNN不能超过Weisfeiler-Lehman(WL)算法在图形同构术中的力量。为了解决现有图形内核和GNN方法的限制,在本文中,我们提出了一种新的GNN框架,称为\ Texit {内核图形神经网络}(Kernnns),该框架将图形内核集成到GNN的消息传递过程中。通过卷积神经网络(CNNS)中的卷积滤波器的启发,KERGNNS采用可训练的隐藏图作为绘图过滤器,该绘图过滤器与子图组合以使用图形内核更新节点嵌入式。此外,我们表明MPNN可以被视为Kergnns的特殊情况。我们将Kergnns应用于多个与图形相关的任务,并使用交叉验证来与基准进行公平比较。我们表明,与现有的现有方法相比,我们的方法达到了竞争性能,证明了增加GNN的表现能力的可能性。我们还表明,KERGNNS中的训练有素的图形过滤器可以揭示数据集的本地图形结构,与传统GNN模型相比,显着提高了模型解释性。
translated by 谷歌翻译
消息传递神经网络(MPNNS)是由于其简单性和可扩展性而大部分地进行图形结构数据的深度学习的领先架构。不幸的是,有人认为这些架构的表现力有限。本文提出了一种名为Comifariant Subgraph聚合网络(ESAN)的新颖框架来解决这个问题。我们的主要观察是,虽然两个图可能无法通过MPNN可区分,但它们通常包含可区分的子图。因此,我们建议将每个图形作为由某些预定义策略导出的一组子图,并使用合适的等分性架构来处理它。我们为图同构同构同构造的1立维Weisfeiler-Leman(1-WL)测试的新型变体,并在这些新的WL变体方面证明了ESAN的表达性下限。我们进一步证明,我们的方法增加了MPNNS和更具表现力的架构的表现力。此外,我们提供了理论结果,描述了设计选择诸如子图选择政策和等效性神经结构的设计方式如何影响我们的架构的表现力。要处理增加的计算成本,我们提出了一种子图采样方案,可以将其视为我们框架的随机版本。关于真实和合成数据集的一套全面的实验表明,我们的框架提高了流行的GNN架构的表现力和整体性能。
translated by 谷歌翻译
Graph classification is an important area in both modern research and industry. Multiple applications, especially in chemistry and novel drug discovery, encourage rapid development of machine learning models in this area. To keep up with the pace of new research, proper experimental design, fair evaluation, and independent benchmarks are essential. Design of strong baselines is an indispensable element of such works. In this thesis, we explore multiple approaches to graph classification. We focus on Graph Neural Networks (GNNs), which emerged as a de facto standard deep learning technique for graph representation learning. Classical approaches, such as graph descriptors and molecular fingerprints, are also addressed. We design fair evaluation experimental protocol and choose proper datasets collection. This allows us to perform numerous experiments and rigorously analyze modern approaches. We arrive to many conclusions, which shed new light on performance and quality of novel algorithms. We investigate application of Jumping Knowledge GNN architecture to graph classification, which proves to be an efficient tool for improving base graph neural network architectures. Multiple improvements to baseline models are also proposed and experimentally verified, which constitutes an important contribution to the field of fair model comparison.
translated by 谷歌翻译
许多现代神经架构的核心的卷积运算符可以有效地被视为在输入矩阵和滤波器之间执行点产品。虽然这很容易适用于诸如图像的数据,其可以在欧几里德空间中表示为常规网格,延伸卷积操作者以在图形上工作,而是由于它们的不规则结构而被证明更具有挑战性。在本文中,我们建议使用图形内部产品的图形内核,即在图形上计算内部产品,以将标准卷积运算符扩展到图形域。这使我们能够定义不需要计算输入图的嵌入的完全结构模型。我们的架构允许插入任何类型和数量的图形内核,并具有在培训过程中学到的结构面具方面提供一些可解释性的额外益处,类似于传统卷积神经网络中的卷积掩模发生的事情。我们执行广泛的消融研究,调查模型超参数的影响,我们表明我们的模型在标准图形分类数据集中实现了竞争性能。
translated by 谷歌翻译
Recently, graph neural networks (GNNs) have revolutionized the field of graph representation learning through effectively learned node embeddings, and achieved state-of-the-art results in tasks such as node classification and link prediction. However, current GNN methods are inherently flat and do not learn hierarchical representations of graphs-a limitation that is especially problematic for the task of graph classification, where the goal is to predict the label associated with an entire graph. Here we propose DIFFPOOL, a differentiable graph pooling module that can generate hierarchical representations of graphs and can be combined with various graph neural network architectures in an end-to-end fashion. DIFFPOOL learns a differentiable soft cluster assignment for nodes at each layer of a deep GNN, mapping nodes to a set of clusters, which then form the coarsened input for the next GNN layer. Our experimental results show that combining existing GNN methods with DIFFPOOL yields an average improvement of 5-10% accuracy on graph classification benchmarks, compared to all existing pooling approaches, achieving a new state-of-the-art on four out of five benchmark data sets.
translated by 谷歌翻译
图表可以模拟实体之间的复杂交互,它在许多重要的应用程序中自然出现。这些应用程序通常可以投入到标准图形学习任务中,其中关键步骤是学习低维图表示。图形神经网络(GNN)目前是嵌入方法中最受欢迎的模型。然而,邻域聚合范例中的标准GNN患有区分\ EMPH {高阶}图形结构的有限辨别力,而不是\ EMPH {低位}结构。为了捕获高阶结构,研究人员求助于主题和开发的基于主题的GNN。然而,现有的基于主基的GNN仍然仍然遭受较少的辨别力的高阶结构。为了克服上述局限性,我们提出了一个新颖的框架,以更好地捕获高阶结构的新框架,铰接于我们所提出的主题冗余最小化操作员和注射主题组合的新颖框架。首先,MGNN生成一组节点表示W.R.T.每个主题。下一阶段是我们在图案中提出的冗余最小化,该主题在彼此相互比较并蒸馏出每个主题的特征。最后,MGNN通过组合来自不同图案的多个表示来执行节点表示的更新。特别地,为了增强鉴别的功率,MGNN利用重新注射功能来组合表示的函数w.r.t.不同的主题。我们进一步表明,我们的拟议体系结构增加了GNN的表现力,具有理论分析。我们展示了MGNN在节点分类和图形分类任务上的七个公共基准上表现出最先进的方法。
translated by 谷歌翻译
近年来,图形神经网络(GNNS)被出现为一个强大的神经结构,以学习在监督的端到端时尚中的节点和图表的矢量表示。到目前为止,只有经验评估GNNS - 显示有希望的结果。以下工作从理论的角度调查了GNN,并将它们与1美元 - 二维韦斯美犬 - Leman Graph同构Heuristic(1美元-WL)相关联。我们表明GNNS在区分非同义(子)图表中,GNN具有与1美元-WL相同的表现力。因此,这两种算法也具有相同的缺点。基于此,我们提出了GNN的概括,所谓的$ k $ -dimensional gnns($ k $ -gnns),这可以考虑多个尺度的高阶图结构。这些高阶结构在社交网络和分子图的表征中起重要作用。我们的实验评估证实了我们的理论调查结果,并确认了更高阶信息在图形分类和回归的任务中有用。
translated by 谷歌翻译
图形神经网络(GNNS)的表现力量受到限制,具有远程交互的斗争,缺乏模拟高阶结构的原则性方法。这些问题可以归因于计算图表和输入图结构之间的强耦合。最近提出的消息通过单独的网络通过执行图形的Clique复合物的消息来自然地解耦这些元素。然而,这些模型可能受到单纯复合物(SCS)的刚性组合结构的严重限制。在这项工作中,我们将最近的基于常规细胞复合物的理论结果扩展到常规细胞复合物,灵活地满满SCS和图表的拓扑物体。我们表明,该概括提供了一组强大的图表“提升”转换,每个图形是导致唯一的分层消息传递过程。我们集体呼叫CW Networks(CWNS)的结果方法比WL测试更强大,而不是比3 WL测试更强大。特别是,当应用于分子图问题时,我们证明了一种基于环的一个这样的方案的有效性。所提出的架构从可提供的较大的表达效益于常用的GNN,高阶信号的原则建模以及压缩节点之间的距离。我们展示了我们的模型在各种分子数据集上实现了最先进的结果。
translated by 谷歌翻译
Pre-publication draft of a book to be published byMorgan & Claypool publishers. Unedited version released with permission. All relevant copyrights held by the author and publisher extend to this pre-publication draft.
translated by 谷歌翻译
Learning node embeddings that capture a node's position within the broader graph structure is crucial for many prediction tasks on graphs. However, existing Graph Neural Network (GNN) architectures have limited power in capturing the position/location of a given node with respect to all other nodes of the graph. Here we propose Position-aware Graph Neural Networks (P-GNNs), a new class of GNNs for computing position-aware node embeddings. P-GNN first samples sets of anchor nodes, computes the distance of a given target node to each anchor-set, and then learns a non-linear distance-weighted aggregation scheme over the anchor-sets. This way P-GNNs can capture positions/locations of nodes with respect to the anchor nodes. P-GNNs have several advantages: they are inductive, scalable, and can incorporate node feature information. We apply P-GNNs to multiple prediction tasks including link prediction and community detection. We show that P-GNNs consistently outperform state of the art GNNs, with up to 66% improvement in terms of the ROC AUC score.Node embedding methods can be categorized into Graph Neural Networks (GNNs) approaches (Scarselli et al., 2009),
translated by 谷歌翻译
尽管(消息通话)图形神经网络在图形或一般关系数据上近似置换量等函数方面具有明显的局限性,但更具表现力的高阶图神经网络不会扩展到大图。他们要么在$ k $ - 订单张量子上操作,要么考虑所有$ k $ - 节点子图,这意味着在内存需求中对$ k $的指数依赖,并且不适合图形的稀疏性。通过为图同构问题引入新的启发式方法,我们设计了一类通用的,置换式的图形网络,与以前的体系结构不同,该网络在表达性和可伸缩性之间提供了细粒度的控制,并适应了图的稀疏性。这些体系结构与监督节点和图形级别的标准高阶网络以及回归体系中的标准高阶图网络相比大大减少了计算时间,同时在预测性能方面显着改善了标准图神经网络和图形内核体系结构。
translated by 谷歌翻译
最近出现了许多子图增强图神经网络(GNN),可证明增强了标准(消息通话)GNN的表达能力。但是,对这些方法之间的相互关系和weisfeiler层次结构的关系有限。此外,当前的方法要么使用给定尺寸的所有子图,要随机均匀地对其进行采样,或者使用手工制作的启发式方法,而不是学习以数据驱动的方式选择子图。在这里,我们提供了一种统一的方法来研究此类体系结构,通过引入理论框架并扩展了亚图增强GNN的已知表达结果。具体而言,我们表明,增加子图的大小总是会增加表达能力,并通过将它们与已建立的$ k \ text { - } \ Mathsf {Wl} $ hierArchy联系起来,从而更好地理解其局限性。此外,我们还使用最近通过复杂的离散概率分布进行反向传播的方法探索了学习对子图进行采样的不同方法。从经验上讲,我们研究了不同子图增强的GNN的预测性能,表明我们的数据驱动体系结构与非DATA驱动的亚图增强图形神经网络相比,在标准基准数据集上提高了对标准基准数据集的预测准确性,同时减少了计算时间。
translated by 谷歌翻译
In the last few years, graph neural networks (GNNs) have become the standard toolkit for analyzing and learning from data on graphs. This emerging field has witnessed an extensive growth of promising techniques that have been applied with success to computer science, mathematics, biology, physics and chemistry. But for any successful field to become mainstream and reliable, benchmarks must be developed to quantify progress. This led us in March 2020 to release a benchmark framework that i) comprises of a diverse collection of mathematical and real-world graphs, ii) enables fair model comparison with the same parameter budget to identify key architectures, iii) has an open-source, easy-to-use and reproducible code infrastructure, and iv) is flexible for researchers to experiment with new theoretical ideas. As of December 2022, the GitHub repository has reached 2,000 stars and 380 forks, which demonstrates the utility of the proposed open-source framework through the wide usage by the GNN community. In this paper, we present an updated version of our benchmark with a concise presentation of the aforementioned framework characteristics, an additional medium-sized molecular dataset AQSOL, similar to the popular ZINC, but with a real-world measured chemical target, and discuss how this framework can be leveraged to explore new GNN designs and insights. As a proof of value of our benchmark, we study the case of graph positional encoding (PE) in GNNs, which was introduced with this benchmark and has since spurred interest of exploring more powerful PE for Transformers and GNNs in a robust experimental setting.
translated by 谷歌翻译
我们提出了一个新的图神经网络(GNN)模块,该模块基于最近提出的几何散射变换的松弛,该变换由图形小波滤波器组成。我们可学习的几何散射(腿)模块可以使小波的自适应调整能够鼓励乐队通道特征在学习的表示中出现。与许多流行的GNN相比,我们的腿部模块在GNN中的结合能够学习长期图形关系,这些GNN通常依赖于邻居之间的平滑度或相似性来编码图形结构。此外,与竞争性GNN相比,其小波先验会导致简化的架构,学到的参数明显少得多。我们证明了基于腿的网络在图形分类基准上的预测性能,以及在生化图数据探索任务中学到的功能的描述性质量。我们的结果表明,基于腿部的网络匹配或匹配流行的GNN,以及在许多数据集上,尤其是在生化域中的原始几何散射结构,同时保留了手工制作的(非学习)几何散射的某些数学特性。
translated by 谷歌翻译
这项工作考虑了在属性关系图(ARG)上表示表示的任务。 ARG中的节点和边缘都与属性/功能相关联,允许ARG编码在实际应用中广泛观察到的丰富结构信息。现有的图形神经网络提供了有限的能力,可以在局部结构环境中捕获复杂的相互作用,从而阻碍他们利用ARG的表达能力。我们提出了Motif卷积模块(MCM),这是一种新的基于基线的图表表示技术,以更好地利用本地结构信息。处理连续边缘和节点功能的能力是MCM比现有基于基础图案的模型的优势之一。 MCM以无监督的方式构建了一个主题词汇,并部署了一种新型的主题卷积操作,以提取单个节点的局部结构上下文,然后将其用于通过多层perceptron学习高级节点表示,并在图神经网络中传递消息。与其他图形学习方法进行分类的合成图相比,我们的方法在捕获结构环境方面要好得多。我们还通过将其应用于几个分子基准来证明我们方法的性能和解释性优势。
translated by 谷歌翻译
在用于图形结构数据的几台机器学习任务中,所考虑的图形可以由不同数量的节点组成。因此,需要设计汇集方法,该方法将不同大小的图形表示聚合到固定大小的表示,其可以用于下游任务,例如图形分类。现有的图形池池方法没有关于图形表示的相似性和其汇总版的保证。在这项工作中,我们通过提出流池来解决这些限制,通过最小化其Wassersein距离,通过最佳地将图形表示的统计数据统计到其汇集的对应物。这是通过对汇集的图形表示来执行Wasserstein梯度流来实现的。我们提出了我们的方法,可以通过任何基础成本考虑表示空间的几何形状。该实施依赖于与最近提出的隐式差异化方案的Wasserstein距离的计算。我们的汇集方法可用于自动分化,可以集成在端到端的深度学习架构中。此外,流量池是不变的,因此可以与GNN中的置换设备提取层组合,以便获得与节点的排序无关的预测。实验结果表明,与现有在图形分类任务中的现有汇集方法相比,我们的方法导致性能增加。
translated by 谷歌翻译