近年来,在设备上的演讲识别(ASR)的个性化已经爆炸性增长,这在很大程度上是由于个人助理功能在移动设备和智能家居扬声器上越来越受欢迎。在这项工作中,我们提出了个人VAD 2.0,这是一种个性化的语音活动探测器,可检测目标扬声器的语音活动,作为流媒体上的ASR系统的一部分。尽管以前的概念证明研究已经验证了个人VAD的有效性,但在生产中可以使用该模型之前,仍然存在一些关键的挑战:首先,在招生和无人列的场景中,质量必须令人满意。其次,它应该以流媒体方式运行。最后,型号的大小应足够小,以适合有限的延迟和CPU/内存预算。为了满足多方面的要求,我们提出了一系列新颖的设计:1)高级扬声器嵌入调制方法; 2)一种新的培训范式,以概括为无数的条件; 3)用于延迟和资源限制的体系结构和运行时优化。对现实语音识别系统的广泛实验证明了我们提出的方法的最新性能。
translated by 谷歌翻译
在本文中,我们提出了一种解决方案,以允许扬声器条件语音模型,例如VoiceFilter-Lite,以支持单个通过中的任意数量的注册用户。这是通过使用多个扬声器嵌入的注意机制来实现,以计算单个细小嵌入,然后将其用作模型的侧面输入。我们实现了多用户VoiceFilter-Lite并为三个任务进行了评估:(1)流自动语音识别(ASR)任务; (2)独立于文本的扬声器验证任务; (3)个性化关键级检测任务,其中ASR必须在嘈杂的环境中检测来自多个注册用户的关键次数。我们的实验表明,在最多四个注册的用户中,多用户VoiceFilter-Lite能够在具有重叠语音时显着降低语音识别和扬声器验证错误,而不会影响其他声学条件下的性能。这种细心的扬声器嵌入方法也可以轻松应用于其他扬声器条件模型,如个人VAD和个性化ASR。
translated by 谷歌翻译
在本文中,我们提出了一个动态的级联编码器自动语音识别(ASR)模型,该模型统一了不同部署方案的模型。此外,该模型可以显着降低模型尺寸和功耗而不会损失质量。也就是说,使用动态级联编码器模型,我们探索了三种技术,以最大程度地提高每个模型大小的性能:1)在共享编码器时为每个子模型使用单独的解码器;2)使用漏斗 - 提高编码器效率;3)平衡因果关系的大小,以提高质量和适合部署限制。总体而言,与基线级联编码器模型相比,拟议的大中等模型的尺寸较小30%,并将功耗降低了33%。统一大型,中和小型模型的三重大小模型可实现37%的总尺寸减少,而质量损失最小,同时大大减少了拥有单独模型的工程工作。
translated by 谷歌翻译
减少潜伏期和模型大小一直是实时自动语音识别(ASR)应用程序方案的重要研究问题。沿着这个方向,模型量化已成为压缩神经网络并降低计算成本的越来越流行的方法。大多数现有的实用ASR系统都采用训练后8位量化。为了在不引入额外的性能回归的情况下达到更高的压缩率,在这项研究中,我们建议开发具有本机量化培训的4位ASR模型,该模型利用天然整数操作有效地优化培训和推理。我们对基于最新构象体的ASR模型进行了两个实验,以评估我们提出的量化技术。首先,我们探讨了不同精度对重量和激活量化对LibrisPeech数据集的影响,并获得了与Float32模型相比,获得了7.7倍尺寸的无损4位构象异构体模型。此后,我们首次研究并揭示了在使用大型数据集训练的实用ASR系统上的4位量化的可行性,并产生了具有4位混合重量和8位权重的无损构象体ASR模型与FLOAT32模型相比,尺寸减小了5倍。
translated by 谷歌翻译
在启用语音的应用程序中,一个预定的热词在同时用来激活设备以便进行查询。 toavoid重复一个热词,我们提出了一个端到端的流(E2E)打算查询检测器,该查询检测器识别向设备指向的发音,并滤除针对设备的其他发出内容。提出的方法将预期的查询检测器置于E2E模型中,该模型将语音识别的不同组件折叠成一个神经网络。E2E对台面解码和预期的查询检测进行建模,也使我们可以基于早期的部分偏置检测结果, ,这对于减少潜伏期和使系统响应很重要。我们证明,与独立的预期检测器相比,检测准确性和600个MSLATENCE的相对相对改善的相对提高一级误差率(EER)的相对提高了22%。在我们的实验中,提出的模型检测用户正在用用户开始讲话后,用8.7%的Eerwithin与设备进行对话。
translated by 谷歌翻译
端到端模型在自动语音识别中快速更换传统的混合模型。变压器,基于机器翻译任务的自我关注的序列到序列模型,在用于自动语音识别时已经给出了有希望的结果。本文探讨了在培训基于变压器的模型的同时在编码器输入时结合扬声器信息的不同方式,以提高其语音识别性能。我们以每个扬声器的扬声器嵌入形式呈现扬声器信息。我们使用两种类型的扬声器嵌入进行实验:在我们以前的工作中提出的X-Vectors和新颖的S-Vectors。我们向两个数据集报告结果a)肉kel讲座数据库和b)librispeech 500小时分割。NPTEL是一个开源电子学习门户,提供来自印度顶级大学的讲座。通过我们将扬声器嵌入的方法集成到模型中,我们通过基线获得了基线的错误率的改进。
translated by 谷歌翻译
本文介绍了流式扬声器的自动语音识别(SA-ASR)模型,该模型可以识别``即使多个人同时讲话,谁说'谁说什么”。我们的模型基于令牌级的序列化输出培训(T-SOT),该培训最近提议以流媒体方式转录多对词的演讲。为了进一步认识说话者的身份,我们提出了一个基于编码器的扬声器嵌入提取器,该扬声器可以估算每个公认的代币的说话者表示,不仅是从非重叠的语音中,而且还来自重叠的语音。所提出的扬声器嵌入为T-vector,与T-SOT ASR模型同步提取,从而可以通过低潜伏期的多词器转录来联合执行说话者识别(SID)或说话者诊断(SD)。我们通过使用LibrisPeechMix和Libralics Corpora评估了ASR和SID/SD联合任务的建议模型。所提出的模型比以前的流媒体模型获得了更高的准确性,并且与最新的离线SA-ASR模型显示出可比甚至更高的结果。
translated by 谷歌翻译
使用未知数量的扬声器数量的单通道远场录制的自动语音识别(ASR)传统上由级联模块解决。最近的研究表明,与模块化系统相比,端到端(E2E)多扬声器ASR模型可以实现卓越的识别准确性。但是,这些模型不会确保由于其对完整音频上下文的依赖性而实时适用性。这项工作采用实时适用性,作为模型设计的第一优先级,并解决了以前的多扬声器经常性神经网络传感器(MS-RNN-T)的几个挑战。首先,我们在训练期间介绍一般的重叠言论模拟,在LibrisPeechMix测试集上产生14%的相对字错误率(WER)改进。其次,我们提出了一种新的多转RNN-T(MT-RNN-T)模型,其具有基于重叠的目标布置策略,其概括为任意数量的扬声器,而没有模型架构的变化。我们调查在Liblics测试集上培训训练期间看到的最大扬声器数量的影响,并在两位扬声器MS-RNN-T上报告28%的相对加速。第三,我们试验丰富的转录战略,共同承认和分割多方言论。通过深入分析,我们讨论所提出的系统的潜在陷阱以及未来的未来研究方向。
translated by 谷歌翻译
语音触发检测是一项重要的任务,它可以在目标用户说关键字短语时激活语音助手。通常对探测器进行语音数据培训,独立于说话者信息,并用于语音触发检测任务。但是,这样的说话者独立语音触发探测器通常会遭受绩效降低,因为代表性不足的群体,例如重音说话者。在这项工作中,我们提出了一个新颖的语音触发探测器,该触发探测器可以使用目标扬声器中的少量话语来提高检测准确性。我们提出的模型采用编码器架构。尽管编码器执行扬声器独立语音触发检测,但类似于传统检测器,解码器预测了每种话语的个性化嵌入。然后,获得个性化的语音触发分数作为在注册话语的嵌入与测试话语之间的相似性得分。个性化的嵌入允许在计算语音触发评分时适应目标扬声器的语音,从而提高语音触发检测精度。实验结果表明,与基线扬声器独立语音触发模型相比,所提出的方法相对降低(FRR)的相对降低38%。
translated by 谷歌翻译
最近,语音界正在看到从基于深神经网络的混合模型移动到自动语音识别(ASR)的端到端(E2E)建模的显着趋势。虽然E2E模型在大多数基准测试中实现最先进的,但在ASR精度方面,混合模型仍然在当前的大部分商业ASR系统中使用。有很多实际的因素会影响生产模型部署决定。传统的混合模型,用于数十年的生产优化,通常擅长这些因素。在不为所有这些因素提供优异的解决方案,E2E模型很难被广泛商业化。在本文中,我们将概述最近的E2E模型的进步,专注于解决行业视角的挑战技术。
translated by 谷歌翻译
端到端(E2E)模型在口语理解(SLU)系统中变得越来越流行,并开始实现基于管道的方法的竞争性能。但是,最近的工作表明,这些模型努力以相同的意图概括为新的措辞,这表明模型无法理解给定话语的语义内容。在这项工作中,我们在E2E-SLU框架内的未标记文本数据中预先训练了在未标记的文本数据上进行预先训练的语言模型,以构建强大的语义表示。同时结合语义信息和声学信息可以增加推理时间,从而在语音助手等应用程序中部署时会导致高潜伏期。我们开发了一个2频道的SLU系统,该系统使用第一张音频的几秒钟的声学信息进行低潜伏期预测,并通过结合语义和声学表示在第二次通过中进行更高质量的预测。我们从先前的2次端到端语音识别系统上的工作中获得了灵感,该系统同时使用审议网络就可以在音频和第一通道假设上进行。所提出的2个通用SLU系统在Fluent Speech命令挑战集和SLURP数据集上优于基于声学的SLU模型,并减少了延迟,从而改善了用户体验。作为ESPNET-SLU工具包的一部分,我们的代码和模型公开可用。
translated by 谷歌翻译
自我监督学习(SSL)在语音识别方面取得了巨大的成功,而有限的探索已尝试完成其他语音处理任务。由于语音信号包含多方面的信息,包括说话者身份,副语言学,口语内容等,学习所有语音任务的通用表示都具有挑战性。为了解决该问题,我们提出了一个新的预培训模型WAVLM,以解决全堆栈的下游语音任务。 Wavlm共同学习了蒙面的语音预测和预训练。通过这种方式,WAVLM不仅可以通过掩盖的语音预测来保持语音内容建模能力,而且还可以通过语音denoing来提高非ASR任务的潜力。此外,WAVLM还采用封闭式的变压器结构的封闭相对位置偏置,以更好地捕获输入语音的序列排序。我们还将培训数据集从60k小时扩展到94K小时。 WAVLM大型在精湛的基准上实现了最先进的性能,并在其代表性基准上为各种语音处理任务带来了重大改进。代码和预培训模型可在https://aka.ms/wavlm上找到。
translated by 谷歌翻译
Speaker embedding extractors significantly influence the performance of clustering-based speaker diarisation systems. Conventionally, only one embedding is extracted from each speech segment. However, because of the sliding window approach, a segment easily includes two or more speakers owing to speaker change points. This study proposes a novel embedding extractor architecture, referred to as a high-resolution embedding extractor (HEE), which extracts multiple high-resolution embeddings from each speech segment. Hee consists of a feature-map extractor and an enhancer, where the enhancer with the self-attention mechanism is the key to success. The enhancer of HEE replaces the aggregation process; instead of a global pooling layer, the enhancer combines relative information to each frame via attention leveraging the global context. Extracted dense frame-level embeddings can each represent a speaker. Thus, multiple speakers can be represented by different frame-level features in each segment. We also propose an artificially generating mixture data training framework to train the proposed HEE. Through experiments on five evaluation sets, including four public datasets, the proposed HEE demonstrates at least 10% improvement on each evaluation set, except for one dataset, which we analyse that rapid speaker changes less exist.
translated by 谷歌翻译
扬声器日流是一个标签音频或视频录制的任务,与扬声器身份或短暂的任务标记对应于扬声器标识的类,以识别“谁谈到何时发表讲话”。在早期,对MultiSpeaker录音的语音识别开发了扬声器日益衰退算法,以使扬声器自适应处理能够实现扬声器自适应处理。这些算法还将自己的价值作为独立应用程序随着时间的推移,为诸如音频检索等下游任务提供特定于扬声器的核算。最近,随着深度学习技术的出现,这在讲话应用领域的研究和实践中引起了革命性的变化,对扬声器日益改善已经进行了快速进步。在本文中,我们不仅审查了扬声器日益改善技术的历史发展,而且还审查了神经扬声器日益改善方法的最新进步。此外,我们讨论了扬声器日复速度系统如何与语音识别应用相结合,以及最近深度学习的激增是如何引领联合建模这两个组件互相互补的方式。通过考虑这种令人兴奋的技术趋势,我们认为本文对社区提供了有价值的贡献,以通过巩固具有神经方法的最新发展,从而促进更有效的扬声器日益改善进一步进展。
translated by 谷歌翻译
本文提出了代币级别的序列化输出训练(T-SOT),这是流式传输多对话者自动语音识别(ASR)的新型框架。与使用多个输出分支的现有流媒体多对话者ASR模型不同,T-SOT模型只有一个单个输出分支,该分支基于其排放时间生成多个扬声器的识别令牌(例如,单词,子字)。引入了指示“虚拟”输出通道更改的特殊令牌,以跟踪重叠的话语。与先前的流媒体ASR模型相比,T-SOT模型具有较低的推理成本和更简单的模型体系结构的优点。此外,在我们对LibrisPeechMix和Librics数据集的实验中,基于T-SOT的变压器换能器模型可实现最新的单词错误率,从而有很大的差距。对于非重叠的语音,T-SOT模型在精度和计算成本方面与单调的ASR模型相提并论,为单个单词和多对话者方案部署一个模型打开了大门。
translated by 谷歌翻译
设备的端到端(E2E)模型已显示出对质量和延迟的英语语音搜索任务的常规模型的改进。 E2E模型还显示了多语言自动语音识别(ASR)的有希望的结果。在本文中,我们将以前的容量解决方案扩展到流应用程序,并提出流媒体多语言E2E ASR系统,该系统在设备上完全运行,质量和延迟与单个单语言模型相当。为了实现这一目标,我们提出了一个编码器端量模型和一个终端(EOU)联合层,以提高质量和延迟权衡。我们的系统以语言不可知论的方式构建,允许它实时支持本条件的代码切换。为了解决大型模型的可行性问题,我们进行了设备分析,并用最近开发的嵌入解码器代替了耗时的LSTM解码器。通过这些更改,我们设法在不到实时的时间内在移动设备上运行了这样的系统。
translated by 谷歌翻译
在本文中,我们在多方会议场景中对说话者的自动语音识别(SA-ASR)进行了比较研究,这一主题越来越关注丰富的转录。具体而言,本研究评估了三种方法。第一种方法,即FD-SOT,由框架级诊断模型组成,以识别说话者和多对话者ASR以识别话语。通过对齐诊断结果和公认的假设,可以获得说话者归因的转录。但是,由于模块化的独立性,这种对齐策略可能会遭受错误的时间戳,从而严重阻碍了模型性能。因此,我们提出了第二种方法WD-SOT,以通过引入单词水平诊断模型来解决对齐误差,从而可以摆脱这种时间戳对齐依赖性。为了进一步缓解对齐问题,我们提出了第三种方法TS-ASR,该方法可以训练目标扬声器分离模块和ASR模块。通过比较每种SA-ASR方法的各种策略,对真实会议场景语料库的实验结果,AlimeTing,表明WD-SOT方法可在平均扬声器依赖性角色错误率(SD-CER)相对降低10.7%,与之相比FD-SOT方法。此外,TS-ASR方法还优于FD-SOT方法,并带来16.5%的相对平均SD-CER减少。
translated by 谷歌翻译
重叠的言语日期始终被视为多标签分类问题。在本文中,通过使用电源集编码多扬声器标签,我们将此任务重新格式化为单个标签预测问题。具体地,我们提出了扬声器嵌入感知的神经日复日复速节(发送)方法,其根据语音特征和给定扬声器嵌入的相似性预测电力集编码标签。我们的方法通过利用之前的文献中未能很好地研究,进一步扩展并与下游任务集成在一起。实验结果表明,我们的方法达到了比目标扬声器语音活动检测更低的日益缓释误差率。当涉及文本信息时,可以进一步降低日复速度误差。对于真正的会议场景,与基于贝叶斯隐马尔可夫模型的聚类算法相比,我们的方法可以实现相对改进34.11%。
translated by 谷歌翻译
至于其他形式的AI,最近已经对不同用户同伙的性能差异进行了研究。在语音识别方面实现公平性的一种方法是(1)确定遭受低标准表现的说话者队列,以及(2)采取针对发现同类的公平性缓解措施。在本文中,我们使用产品规模的AI助手语音识别系统的数据报告了发现和缓解性能差异的初步发现。我们将基于地理和人口统计学信息的队列发现与一种更可扩展的方法进行比较,该方法将使用扬声器嵌入技术分组没有人类标签的说话者。为了缓解公平性,我们发现对代表性不足的队列的过度采样,以及通过其他输入变量对扬声器队列的建模,从而减少了表现和底部性能队列之间的差距,而不会降低整体识别精度。
translated by 谷歌翻译
在本文中,我们呈现VDTTS,一个视觉驱动的文本到语音模型。通过配音而激励,VDTTS利用视频帧作为伴随文本的附加输入,并生成与视频信号匹配的语音。我们展示了这允许VDTTS,与普通的TTS模型不同,产生不仅具有自然暂停和间距等韵律变化的语音,而且还与输入视频同步。实验,我们显示我们的模型产生良好的同步输出,接近地面真理的视频语音同步质量,在几个具有挑战性的基准中,包括来自VoxceleB2的“野外”内容。我们鼓励读者查看演示视频,演示视频语音同步,对扬声器ID交换和韵律的鲁棒性。
translated by 谷歌翻译