多标签图像分类旨在预测图像中的所有可能标签。考虑到在每个培训图像中注释所有标签可能是昂贵的,通常将其作为部分标签的学习问题。关于部分标签学习的现有作品集中在每个训练图像只有其标签的子集注释的情况下。一种特殊情况是在每个训练图像中仅注释一个正标签。为了进一步减轻注释负担并增强了分类器的性能,本文提出了一个新的部分标签设置,其中仅标记了训练图像的一个子集,每个图像只有一个正面标签,而其余的培训图像仍保留未标记。为了处理这个新设置,我们建议一个端到端的深层网络PLMCL(部分标签动量课程学习),可以学会为部分标记和未标记的培训图像生成自信的伪标签。基于动量的新法律通过考虑更新伪标签的速度,更新每个训练图像上的软伪标签,这些标签的更新有助于避免捕获到低信心的本地最低限度,尤其是在培训的早期阶段,由于缺乏观察到的标签和培训的早期阶段对伪标签的信心。此外,我们还提出了一个信心的调度程序,以适应性地对不同标签进行易于锻炼的学习。广泛的实验表明,我们提出的PLMCL在三个不同数据集上的各个部分标签设置下优于许多最先进的多标签分类方法。
translated by 谷歌翻译
由于难以收集详尽的多标签注释,因此多标签数据集通常包含部分标签。我们考虑了这个弱监督的学习问题的极端,称为单个积极的多标签学习(SPML),其中每个多标签训练图像只有一个正标签。传统上,所有未注释的标签都被认为是SPML中的负标签,它引入了假阴性标签,并导致模型训练被假定的负标签所支配。在这项工作中,我们选择从替代角度来对待所有未经注释的标签,即承认它们是未知的。因此,我们提出熵最大化(EM)损失,以达到提供适当监督信号的特殊梯度制度。此外,我们提出了采用不对称耐受性策略和自定进度程序的不对称伪标记(APL),以与EM损失合作,然后提供更精确的监督。实验表明,我们的方法可显着提高性能,并在所有四个基准测试中实现最先进的结果。代码可从https://github.com/correr-zhou/spml-acktheunknown获得。
translated by 谷歌翻译
尽管半监督学习(SSL)的最新研究已经在单标签分类问题上取得了强劲的表现,但同样重要但毫无疑问的问题是如何利用多标签分类任务中未标记数据的优势。为了将SSL的成功扩展到多标签分类,我们首先使用说明性示例进行分析,以获得有关多标签分类中存在的额外挑战的一些直觉。基于分析,我们提出了一个基于百分比的阈值调整方案的百分位摩擦,以动态地改变训练期间每个类别的正和负伪标签的得分阈值,以及动态的未标记失误权重,从而进一步降低了从早期未标记的预测。与最近的SSL方法相比,在不丧失简单性的情况下,我们在Pascal VOC2007和MS-Coco数据集上实现了强劲的性能。
translated by 谷歌翻译
Deep learning has emerged as an effective solution for solving the task of object detection in images but at the cost of requiring large labeled datasets. To mitigate this cost, semi-supervised object detection methods, which consist in leveraging abundant unlabeled data, have been proposed and have already shown impressive results. However, most of these methods require linking a pseudo-label to a ground-truth object by thresholding. In previous works, this threshold value is usually determined empirically, which is time consuming, and only done for a single data distribution. When the domain, and thus the data distribution, changes, a new and costly parameter search is necessary. In this work, we introduce our method Adaptive Self-Training for Object Detection (ASTOD), which is a simple yet effective teacher-student method. ASTOD determines without cost a threshold value based directly on the ground value of the score histogram. To improve the quality of the teacher predictions, we also propose a novel pseudo-labeling procedure. We use different views of the unlabeled images during the pseudo-labeling step to reduce the number of missed predictions and thus obtain better candidate labels. Our teacher and our student are trained separately, and our method can be used in an iterative fashion by replacing the teacher by the student. On the MS-COCO dataset, our method consistently performs favorably against state-of-the-art methods that do not require a threshold parameter, and shows competitive results with methods that require a parameter sweep search. Additional experiments with respect to a supervised baseline on the DIOR dataset containing satellite images lead to similar conclusions, and prove that it is possible to adapt the score threshold automatically in self-training, regardless of the data distribution.
translated by 谷歌翻译
迄今为止,最强大的半监督对象检测器(SS-OD)基于伪盒,该盒子需要一系列带有微调超参数的后处理。在这项工作中,我们建议用稀疏的伪盒子以伪造的伪标签形式取代稀疏的伪盒。与伪盒相比,我们的密集伪标签(DPL)不涉及任何后处理方法,因此保留了更丰富的信息。我们还引入了一种区域选择技术,以突出关键信息,同时抑制密集标签所携带的噪声。我们将利用DPL作为密集老师的拟议的SS-OD算法命名。在可可和VOC上,密集的老师在各种环境下与基于伪盒的方法相比表现出卓越的表现。
translated by 谷歌翻译
弱监督的多标签分类(WSML)任务是使用每个图像的部分观察标签学习多标签分类,由于其巨大的注释成本,它变得越来越重要。在这项工作中,我们首先将未观察到的标签视为负标签,将WSML任务投入到嘈杂的多标签分类中。从这个角度来看,我们从经验上观察到,在多标签环境中也出现了在嘈杂的多级环境中最初发现的记忆效应。也就是说,该模型首先了解清洁标签的表示,然后开始记住嘈杂的标签。基于这一发现,我们提出了WSML的新方法,该方法拒绝或纠正大型损失样品,以防止模型记住嘈杂的标签。如果没有沉重且复杂的组件,我们提出的方法在几种部分标签设置上的先前最先前的WSML方法(包括Pascal VOC 2012,Coco,MS Coco,Nuswide,Cub,Cub和OpenImimages V3数据集)都优于先前的最先前的WSML方法。各种分析还表明,我们的方法实际上效果很好,证实了在弱监督的多标签分类中正确处理大损失的问题。我们的代码可从https://github.com/snucml/largelossmatters获得。
translated by 谷歌翻译
We propose a novel end-to-end curriculum learning approach for sparsely labelled animal datasets leveraging large volumes of unlabelled data to improve supervised species detectors. We exemplify the method in detail on the task of finding great apes in camera trap footage taken in challenging real-world jungle environments. In contrast to previous semi-supervised methods, our approach adjusts learning parameters dynamically over time and gradually improves detection quality by steering training towards virtuous self-reinforcement. To achieve this, we propose integrating pseudo-labelling with curriculum learning policies and show how learning collapse can be avoided. We discuss theoretical arguments, ablations, and significant performance improvements against various state-of-the-art systems when evaluating on the Extended PanAfrican Dataset holding approx. 1.8M frames. We also demonstrate our method can outperform supervised baselines with significant margins on sparse label versions of other animal datasets such as Bees and Snapshot Serengeti. We note that performance advantages are strongest for smaller labelled ratios common in ecological applications. Finally, we show that our approach achieves competitive benchmarks for generic object detection in MS-COCO and PASCAL-VOC indicating wider applicability of the dynamic learning concepts introduced. We publish all relevant source code, network weights, and data access details for full reproducibility. The code is available at https://github.com/youshyee/DCL-Detection.
translated by 谷歌翻译
The core issue in semi-supervised learning (SSL) lies in how to effectively leverage unlabeled data, whereas most existing methods tend to put a great emphasis on the utilization of high-confidence samples yet seldom fully explore the usage of low-confidence samples. In this paper, we aim to utilize low-confidence samples in a novel way with our proposed mutex-based consistency regularization, namely MutexMatch. Specifically, the high-confidence samples are required to exactly predict "what it is" by conventional True-Positive Classifier, while the low-confidence samples are employed to achieve a simpler goal -- to predict with ease "what it is not" by True-Negative Classifier. In this sense, we not only mitigate the pseudo-labeling errors but also make full use of the low-confidence unlabeled data by consistency of dissimilarity degree. MutexMatch achieves superior performance on multiple benchmark datasets, i.e., CIFAR-10, CIFAR-100, SVHN, STL-10, mini-ImageNet and Tiny-ImageNet. More importantly, our method further shows superiority when the amount of labeled data is scarce, e.g., 92.23% accuracy with only 20 labeled data on CIFAR-10. Our code and model weights have been released at https://github.com/NJUyued/MutexMatch4SSL.
translated by 谷歌翻译
在本文中,我们提出了一种基于补丁的体系结构,用于多标签分类问题,其中仅在数据集图像中观察到一个正面标签。我们的贡献是双重的。首先,我们根据注意机制介绍了一个轻斑架构。接下来,利用嵌入自相似性的补丁,我们提供了一种新颖的策略来估计负面示例并处理积极和未标记的学习问题。实验表明,我们的体系结构可以从头开始训练,而在文献中相关方法需要进行类似数据库的预培训。
translated by 谷歌翻译
在本文中,我们研究了部分多标签(PML)图像分类问题,其中每个图像都用候选标签集注释,由多个相关标签和其他嘈杂标签组成。现有的PML方法通常会设计一种歧义策略来通过利用具有额外假设的先验知识来滤除嘈杂的标签,但不幸的是,这在许多实际任务中都无法使用。此外,由于歧义的目标函数通常是在整个训练集中精心设计的,因此在小型批次上使用SGD的深层模型中几乎无法优化它。在本文中,我们第一次提出了一个深层模型,以增强表示能力和歧视能力。一方面,我们提出了一种新型的基于课程的放弃策略,以通过融合不同类别的各种困难来逐步识别地面真相标签。另一方面,引入了一个一致性正规化,以供模型重新培训,以平衡拟合的易于标签并利用潜在的相关标签。对常用基准数据集的广泛实验结果表明,所提出的方法显着优于SOTA方法。
translated by 谷歌翻译
半监督的对象检测在平均教师驱动的自我训练的发展中取得了重大进展。尽管结果有令人鼓舞,但在先前的工作中尚未完全探索标签不匹配问题,从而导致自训练期间严重确认偏见。在本文中,我们从两个不同但互补的角度(即分布级别和实例级别)提出了一个简单而有效的标签框架。对于前者,根据Monte Carlo采样,可以合理地近似来自标记数据的未标记数据的类分布。在这种弱监督提示的指导下,我们引入了一个重新分配卑鄙的老师,该老师利用自适应标签 - 分布意识到的信心阈值来生成无偏见的伪标签来推动学生学习。对于后一个,存在着跨教师模型的被忽视的标签分配歧义问题。为了解决这个问题,我们提出了一种新的标签分配机制,用于自我训练框架,即提案自我分配,该机制将学生的建议注入教师,并生成准确的伪标签,以相应地匹配学生模型中的每个建议。 MS-Coco和Pascal-VOC数据集的实验证明了我们提出的框架与其他最先进的框架相当优越。代码将在https://github.com/hikvision-research/ssod上找到。
translated by 谷歌翻译
在缺少标签(MLML)的情况下,多标签学习是一个具有挑战性的问题。现有方法主要关注网络结构或培训方案的设计,这提高了实现的复杂性。这项工作旨在满足MLML中的损失函数的潜力,而不增加程序和复杂性。为此,我们通过鲁棒损失设计提出了两种简单但有效的方法,基于观察到模型可以在高精度训练期间识别丢失的标签。首先是对底层的良好损失,即山损,重量底部以山的形状重量否定,以减轻虚假底片的效果。第二个是自定步损耗校正(SPLC)方法,其利用缺失标签的近似分布下的最大似然标准导出的丢失。在各种多标签图像分类数据集上的综合实验表明,我们的方法可以显着提高MLML的性能,并在MLML中实现新的最先进的损失函数。
translated by 谷歌翻译
弱监督对象检测(WSOD)旨在仅训练需要图像级注释的对象检测器。最近,一些作品设法选择了从训练有素的WSOD网络生成的准确框,以监督半监督的检测框架以提高性能。但是,这些方法只需根据图像级标准将设置的训练分为标记和未标记的集合,从而选择了足够的错误标记或错误的局部盒子预测作为伪基真正的真实性,从而产生了次优的检测性能解决方案。为了克服这个问题,我们提出了一个新颖的WSOD框架,其新范式从弱监督到嘈杂的监督(W2N)。通常,通过训练有素的WSOD网络产生的给定的伪基真实性,我们提出了一种两模块迭代训练算法来完善伪标签并逐步监督更好的对象探测器。在定位适应模块中,我们提出正规化损失,以减少原始伪基真实性中判别零件的比例,从而获得更好的伪基真实性,以进行进一步的训练。在半监督的模块中,我们提出了两个任务实例级拆分方法,以选择用于训练半监督检测器的高质量标签。不同基准测试的实验结果验证了W2N的有效性,我们的W2N优于所有现有的纯WSOD方法和转移学习方法。我们的代码可在https://github.com/1170300714/w2n_wsod上公开获得。
translated by 谷歌翻译
在本文中,我们在半监督对象检测(SSOD)中深入研究了两种关键技术,即伪标记和一致性训练。我们观察到,目前,这两种技术忽略了对象检测的一些重要特性,从而阻碍了对未标记数据的有效学习。具体而言,对于伪标记,现有作品仅关注分类得分,但不能保证伪框的本地化精度;为了保持一致性训练,广泛采用的随机训练只考虑了标签级的一致性,但错过了功能级别的训练,这在确保尺度不变性方面也起着重要作用。为了解决嘈杂的伪箱所产生的问题,我们设计了包括预测引导的标签分配(PLA)和正面验证一致性投票(PCV)的嘈杂伪盒学习(NPL)。 PLA依赖于模型预测来分配标签,并使甚至粗糙的伪框都具有鲁棒性。 PCV利用积极建议的回归一致性来反映伪盒的本地化质量。此外,在一致性训练中,我们提出了包括标签和特征水平一致性的机制的多视图尺度不变学习(MSL),其中通过将两个图像之间的移动特征金字塔对准具有相同内容但变化量表的变化来实现特征一致性。在可可基准测试上,我们的方法称为伪标签和一致性训练(PSECO),分别以2.0、1.8、2.0分的1%,5%和10%的标签比优于SOTA(软教师)。它还显着提高了SSOD的学习效率,例如,PSECO将SOTA方法的训练时间减半,但实现了更好的性能。代码可从https://github.com/ligang-cs/pseco获得。
translated by 谷歌翻译
Unsupervised domain adaptation reduces the reliance on data annotation in deep learning by adapting knowledge from a source to a target domain. For privacy and efficiency concerns, source-free domain adaptation extends unsupervised domain adaptation by adapting a pre-trained source model to an unlabeled target domain without accessing the source data. However, most existing source-free domain adaptation methods to date focus on the transductive setting, where the target training set is also the testing set. In this paper, we address source-free domain adaptation in the more realistic inductive setting, where the target training and testing sets are mutually exclusive. We propose a new semi-supervised fine-tuning method named Dual Moving Average Pseudo-Labeling (DMAPL) for source-free inductive domain adaptation. We first split the unlabeled training set in the target domain into a pseudo-labeled confident subset and an unlabeled less-confident subset according to the prediction confidence scores from the pre-trained source model. Then we propose a soft-label moving-average updating strategy for the unlabeled subset based on a moving-average prototypical classifier, which gradually adapts the source model towards the target domain. Experiments show that our proposed method achieves state-of-the-art performance and outperforms previous methods by large margins.
translated by 谷歌翻译
培训深层神经网络以识别图像识别通常需要大规模的人类注释数据。为了减少深神经溶液对标记数据的依赖,文献中已经提出了最先进的半监督方法。尽管如此,在面部表达识别领域(FER)领域,使用这种半监督方法非常罕见。在本文中,我们介绍了一项关于最近提出的在FER背景下的最先进的半监督学习方法的全面研究。我们对八种半监督学习方法进行了比较研究当使用各种标记的样品时。我们还将这些方法的性能与完全监督的培训进行了比较。我们的研究表明,当培训现有的半监督方法时,每类标记的样本只有250个标记的样品可以产生可比的性能,而在完整标记的数据集中训练的完全监督的方法。为了促进该领域的进一步研究,我们在:https://github.com/shuvenduroy/ssl_fer上公开提供代码
translated by 谷歌翻译
最近,许多半监督的对象检测(SSOD)方法采用教师学生框架并取得了最新的结果。但是,教师网络与学生网络紧密相结合,因为教师是学生的指数移动平均值(EMA),这会导致表现瓶颈。为了解决耦合问题,我们为SSOD提出了一个周期自我训练(CST)框架,该框架由两个老师T1和T2,两个学生S1和S2组成。基于这些网络,构建了一个周期自我训练机制​​,即S1 $ {\ rightarrow} $ t1 $ {\ rightArow} $ s2 $ {\ rightArrow} $ t2 $ {\ rightArrow} $ s1。对于S $ {\ Rightarrow} $ T,我们还利用学生的EMA权重来更新老师。对于t $ {\ rightarrow} $ s,而不是直接为其学生S1(S2)提供监督,而是老师T1(T2)为学生S2(S1)生成伪标记,从而松散耦合效果。此外,由于EMA的财产,老师最有可能积累学生的偏见,并使错误变得不可逆转。为了减轻问题,我们还提出了分配一致性重新加权策略,在该策略中,根据教师T1和T2的分配一致性,将伪标记重新加权。通过该策略,可以使用嘈杂的伪标签对两个学生S2和S1进行训练,以避免确认偏见。广泛的实验证明了CST的优势,通过将AP比基线优于最先进的方法提高了2.1%的绝对AP改进,并具有稀缺的标记数据,而胜过了2.1%的绝对AP。
translated by 谷歌翻译
用于对象检测的注释边界框很昂贵,耗时且容易出错。在这项工作中,我们提出了一个基于DITR的框架,该框架旨在在部分注释的密集场景数据集中明确完成丢失的注释。这减少了注释场景中的每个对象实例,从而降低注释成本。完成DETR解码器中的对象查询,并使用图像中对象的补丁信息。结合匹配损失,它可以有效地找到与输入补丁相似的对象并完成丢失的注释。我们表明,我们的框架优于最先进的方法,例如软采样和公正的老师,同时可以与这些方法一起使用以进一步提高其性能。我们的框架对下游对象探测器的选择也不可知。我们显示了多个流行探测器的性能改进,例如在多个密集的场景数据集中更快的R-CNN,CASCADE R-CNN,CENTERNET2和可变形的DETR。
translated by 谷歌翻译
我们在语义分段(NCDSS)中介绍了新型类发现的新设置,其目的在于将未标记的图像分段,其中给出了从标记的不相交类集之前知识的新类。与看起来在图像分类中的新型类发现的现有方法相比,我们专注于更具挑战性的语义细分。在NCDS中,我们需要区分对象和背景,并处理图像内的多个类的存在,这增加了使用未标记数据的难度。为了解决这个新的设置,我们利用标记的基础数据和显着模型来粗略地集群新颖的课程,以便在我们的基本框架中进行模型培训。此外,我们提出了基于熵的不确定性建模和自我培训(EUMS)框架来克服嘈杂的伪标签,进一步提高了新颖类别的模型性能。我们的欧姆斯利用熵排名技术和动态重新分配来蒸馏清洁标签,从而充分利用自我监督的学习来充分利用嘈杂的数据。我们在Pascal-5 $ ^ i $ dataSet上构建NCDSS基准。广泛的实验表明了基本框架的可行性(实现了平均Miou的49.81%)和欧姆斯框架的有效性(优于9.28%Miou的基本框架)。
translated by 谷歌翻译
一个常见的分类任务情况是,有大量数据可用于培训,但只有一小部分用类标签注释。在这种情况下,半监督培训的目的是通过利用标记数据,而且从大量未标记的数据中提高分类准确性。最近的作品通过探索不同标记和未标记数据的不同增强性数据之间的一致性约束,从而取得了重大改进。遵循这条路径,我们提出了一个新颖的无监督目标,该目标侧重于彼此相似的高置信度未标记的数据之间所研究的关系较少。新提出的对损失最大程度地减少了高置信度伪伪标签之间的统计距离,其相似性高于一定阈值。我们提出的简单算法将对损失与MixMatch家族开发的技术结合在一起,显示出比以前在CIFAR-100和MINI-IMAGENET上的算法的显着性能增长,并且与CIFAR-的最先进方法相当。 10和SVHN。此外,简单还优于传输学习设置中最新方法,其中模型是由在ImainEnet或域内实现的权重初始化的。该代码可在github.com/zijian-hu/simple上获得。
translated by 谷歌翻译