图像处理中最重要的问题之一是由于模糊过程而丢失的图像的近似。这些类型的事项分为非盲目和盲目问题。由于原始图像和点扩展功能估计未知,第二种问题比计算比第一个问题更复杂。在本文中,引入了一种基于$ L_0-\ alpha L_1 $正则化和帧转换的基于粗细迭代的算法,以近似传播函数估计。由于内核的分解到不同频率,Framefet转移改善了恢复的内核。同样在所提出的模型分数梯度运算符代替普通梯度操作员。在不同种类的图像上调查了所提出的方法,例如文本,面部,自然。所提出的方法的输出反映了所提出的算法在恢复图像中恢复盲问题的有效性。
translated by 谷歌翻译
图像生产工具并不总是创建清晰的图像,有时会创建嘈杂和模糊的图像。在这些情况下,泊松噪声是在天文学中拍摄的医学图像和图像中出现的最著名的声音之一。模糊的图像与泊松噪声掩盖了医学或天文学中非常重要的重要细节。因此,研究人员总是考虑研究和提高受这种噪声影响的图像质量。在本文中,在第一步中,基于帧转换,引入了局部最小的先验,在下一步中,该工具与分数计算一起用于泊松式图像模糊反volution。在下文中,该模型被推广到盲案。为了评估提出的模型的性能,已经研究了一些图像,例如真实图像。
translated by 谷歌翻译
在本文中,我们解决了逆转图像滤波器效果的新问题,该图像过滤器可以是线性的或非线性的。假设是滤波器的算法未知,滤波器可作为黑框。我们为最小化本地补丁的成本函数和使用总衍生物来近似于梯度下降以解决问题的渐变来制定该逆问题。我们分析影响傅里叶域中输出的收敛和质量的因素。我们还研究加速梯度下降算法在三个无梯度的反向滤波器中的应用,包括本文提出的较方案。我们提出了广泛的实验结果,以评估所提出的算法的复杂性和有效性。结果表明,所提出的算法优于现有技术(1),它与最快的反向滤波器的复杂程度相同,但它可以反转更多数量的滤波器,并且(2)它可以反转与非常复杂的反滤波器的过滤器相同的滤波器列表,但其复杂性要小得多。
translated by 谷歌翻译
盐和辣椒噪声去除是图像处理中的常见问题。传统的去噪方法有两个限制。首先,通常未准确描述噪声特性。例如,噪声位置信息通常被忽略,并且盐和辣椒噪声的稀疏性通常由L1标准描述,这不能清楚地示出稀疏变量。其次,传统方法将污染图像分离成恢复的图像和噪声部分,从而导致恢复具有不满足平滑部件和细节部件的图像。在本研究中,我们引入了噪声检测策略来确定噪声的位置,并且采用由LP准规范描绘的非凸稀稀曲面正规化来描述噪声的稀疏性,从而解决了第一个限制。采用静止框架变换的形态分析框架将处理的图像分解为卡通,纹理和噪声部件以解决第二个限制。然后,采用乘法器(ADMM)的交替方向方法来解决所提出的模型。最后,进行实验以验证所提出的方法,并将其与一些最新的最先进的去噪方法进行比较。实验结果表明,该方法可以在保留加工图像的细节时去除盐和辣椒噪声。
translated by 谷歌翻译
非盲折叠是一个不良问题。大多数现有方法通常将该问题与最大-A-Bouthiori框架制定,并通过设计潜在清晰图像的类型的正则化术语和数据项来解决它。在本文中,我们通过学习鉴别性收缩函数来提出有效的非盲折叠方法来隐含地模拟这些术语。与使用深度卷积神经网络(CNNS)或径向基函数的大多数现有方法来说,我们简单地学习正则化术语,我们制定数据项和正则化术语,并将解构模型分成与数据相关和正则化相关的子 - 根据乘法器的交替方向方法问题。我们探讨了Maxout函数的属性,并使用颤扬层开发一个深入的CNN模型,以学习直接近似对这两个子问题的解决方案的判别缩小功能。此外,考虑到基于快速的傅里叶变换的图像恢复通常导致振铃伪像,而基于共轭梯度的图像恢复是耗时的,我们开发共轭梯度网络以有效且有效地恢复潜在的清晰图像。实验结果表明,该方法在效率和准确性方面对最先进的方法有利地执行。
translated by 谷歌翻译
Deconvolution is a widely used strategy to mitigate the blurring and noisy degradation of hyperspectral images~(HSI) generated by the acquisition devices. This issue is usually addressed by solving an ill-posed inverse problem. While investigating proper image priors can enhance the deconvolution performance, it is not trivial to handcraft a powerful regularizer and to set the regularization parameters. To address these issues, in this paper we introduce a tuning-free Plug-and-Play (PnP) algorithm for HSI deconvolution. Specifically, we use the alternating direction method of multipliers (ADMM) to decompose the optimization problem into two iterative sub-problems. A flexible blind 3D denoising network (B3DDN) is designed to learn deep priors and to solve the denoising sub-problem with different noise levels. A measure of 3D residual whiteness is then investigated to adjust the penalty parameters when solving the quadratic sub-problems, as well as a stopping criterion. Experimental results on both simulated and real-world data with ground-truth demonstrate the superiority of the proposed method.
translated by 谷歌翻译
本文提出了一种通过深层插件(PNP)方法恢复数字视频的新方法。在贝叶斯形式主义下,该方法包括在交替的优化方案中使用深度卷积的降级网络代替先前的近端操作员。我们通过直接应用该方法来恢复降级视频观察结果的数字视频,从而将自己与先前的PNP工作区分开来。这样,可以将经过验证训练的网络重新用于其他视频修复任务。我们在视频脱张,超分辨率和随机缺失像素的插值方面的实验都显示出明显的好处,因为它使用专门为视频denoising设计的网络,因为它可以产生更好的恢复性能和更好的时间稳定性。使用相同的PNP公式。此外,我们的方法比较比较在序列的每个帧上分别应用不同的最新PNP方案。这在视频修复领域打开了新的观点。
translated by 谷歌翻译
相机万向节系统在各种空气或水系统中非常重要,用于导航,目标跟踪,安全性和监视等应用。由于在短时间内可以重新讨论给定的视野(FOV),因此对于实时应用,对于实时应用,优选用于实时应用的更高的转向速率(旋转角度)。然而,由于Gimbal和场景之间的相对运动在曝光时间期间,捕获的视频帧可能遭受运动模糊。由于大多数后捕获后应用需要模糊图像,因此实时运动脱棕色是重要的需求。尽管存在盲的去欺诈方法,其旨在从模糊输入中检索潜像,因此它们受到非常高维优化的约束,从而产生大的执行时间。另一方面,对于运动去掩盖的深度学习方法,虽然快速,但不令人满意地概括到不同的域(例如,空气,水等)。在这项工作中,我们解决了基于Gimbal的系统捕获的红外线(IR)图像中实时运动去纹的问题。我们揭示了模糊 - 内核的先验知识如何结合非盲去欺诈方法来实现实时性能。重要的是,我们的数学模型可以利用,以创建具有现实万向动动运动模糊的大型数据集。这种数据集是一种罕见的数据集可以是当代深度学习方法的有价值资产。我们表明,与去纹理中的最先进技术相比,我们的方法更适合实用的基于Gimbal的成像系统。
translated by 谷歌翻译
图像恢复仍然是图像处理中有挑战性的任务。许多方法解决这个问题,通常通过最小化非平滑惩罚的共轨似然函数来解决。虽然解决方案很容易以理论保证来解释,但其估计依赖于可能需要时间的优化过程。考虑到图像分类和分割深度学习的研究努力,这类方法提供了一个严重的替代方案来执行图像恢复,但要挑战解决逆问题。在这项工作中,我们设计了一个名为Deeppdnet的深网络,从原始双近迭代构建,与之前的分析有关的标准惩罚可能性,允许我们利用两个世界。我们用固定图层为深度网络进行重构Condat-Vu原始 - 双混梯度(PDHG)算法的特定实例。学习的参数均为PDHG算法阶梯大小和惩罚中涉及的分析线性运算符(包括正则化参数)。允许这些参数从层变为另一个参数。提出了两种不同的学习策略:提出了“全学习”和“部分学习”,第一个是数值最有效的,而第二个是依赖于标准约束确保标准PDHG迭代中的收敛。此外,研究了全局和局部稀疏分析,以寻求更好的特征表示。我们将所提出的方法应用于MNIST和BSD68数据集上的图像恢复以及BSD100和SET14数据集的单个图像超分辨率。广泛的结果表明,建议的DeepPDNET在MNIST和更复杂的BSD68,BSD100和SET14数据集中展示了卓越的性能,用于图像恢复和单图像超分辨率任务。
translated by 谷歌翻译
迭代加权收缩阈值算法(IWSTA)已经显示出优于经典的未加权迭代收缩 - 阈值算法(ISTA),用于解决线性逆问题,其不同地解决属性。本文提出了一种新的熵正则化IWSTA(ERIWSTA),该IWSTA(ERIWSTA)为成本函数增加了成本函数以衡量权重的不确定性,以刺激参与问题解决的属性。然后,用拉格朗日乘法器方法解决权重,以获得简单的迭代更新。可以解释权重作为问题解决方案的贡献的概率。CT图像恢复的实验结果表明,该方法在收敛速度和恢复精度方面具有比现有方法更好的性能。
translated by 谷歌翻译
低等级张量完成(LRTC)问题引起了计算机视觉和信号处理的极大关注。如何获得高质量的图像恢复效果仍然是目前要解决的紧急任务。本文提出了一种新的张量$ l_ {2,1} $最小化模型(TLNM),该模型(TLNM)集成了总和核标准(SNN)方法,与经典的张量核定常(TNN)基于张量的张量完成方法不同,与$ L_ { 2,1} $ norm和卡塔尔里亚尔分解用于解决LRTC问题。为了提高图像的局部先验信息的利用率,引入了总变化(TV)正则化项,从而导致一类新的Tensor $ L_ {2,1} $ NORM Minimization,总变量模型(TLNMTV)。两个提出的模型都是凸,因此具有全局最佳解决方案。此外,我们采用交替的方向乘数法(ADMM)来获得每个变量的封闭形式解,从而确保算法的可行性。数值实验表明,这两种提出的算法是收敛性的,比较优于方法。特别是,当高光谱图像的采样率为2.5 \%时,我们的方法显着优于对比方法。
translated by 谷歌翻译
该论文通过将基于定向准分析小波包(QWP)与最新的加权核定标准最小化(WNNM)denoising算法相结合,从而提出了图像降级方案。基于QWP的Denoising方法(QWPDN)由降级图像的多尺度QWP变换,使用双变量收缩方法的适应性局部软阈值应用于转换系数,以及从几个分解级别中恢复阈值系数的图像。合并的方法由QWPDN和WNNM算法的几个迭代组成,以每种迭代的方式,从一种算法中的输出将输入提高到另一个算法。提出的方法将QWPDN的功能融合在一起,即使在严重损坏的图像中捕获边缘和精细的纹理模式,并利用了WNNM算法固有的真实图像中的非本地自相似性。多个实验将所提出的方法与包括WNNM在内的六种高级denoing算法进行了比较,证实,在定量度量和视觉感知质量方面,合并的跨增强算法比大多数都优于大多数。
translated by 谷歌翻译
在这项工作中,我们研究了非盲目图像解卷积的问题,并提出了一种新的经常性网络架构,其导致高图像质量的竞争性恢复结果。通过现有大规模线性求解器的计算效率和稳健性的推动,我们设法将该问题的解决方案表达为一系列自适应非负数最小二乘问题的解决方案。这引发了我们提出的复发性最小二乘因解网络(RLSDN)架构,其包括在其输入和输出之间施加线性约束的隐式层。通过设计,我们的网络管理以同时服务两个重要的目的。首先,它隐含地模拟了可以充分表征这组自然图像的有效图像,而第二种是它恢复相应的最大后验(MAP)估计。近期最先进的方法的公开数据集的实验表明,我们提出的RLSDN方法可以实现所有测试方案的灰度和彩色图像的最佳报告性能。此外,我们介绍了一种新颖的培训策略,可以通过任何网络架构采用,这些架构涉及线性系统作为其管道的一部分的解决方案。我们的策略完全消除了线性求解器所需迭代的需要,因此,它在训练期间显着降低了内存占用。因此,这使得能够培训更深的网络架构,这可以进一步提高重建结果。
translated by 谷歌翻译
盲目解构是一种在各种田地中产生的不良问题,从显微镜到天文学。问题的不良性质需要足够的前沿到达理想的解决方案。最近,已经表明,深度学习架构可以用作在无监督盲卷积优化期间的图像生成,然而甚至在单个图像上也呈现性能波动。我们建议使用Wiener-Deconvolulation在优化期间通过从高斯开始使用辅助内核估计来指导图像发生器在优化期间。我们观察到与低频特征相比,通过延迟再现去卷积的高频伪影。另外,图像发生器从模糊图像的速度再现解码图像的低频特征。我们在约束的优化框架中嵌入计算过程,并表明该方法在多个数据集中产生更高的稳定性和性能。此外,我们提供代码。
translated by 谷歌翻译
多尺度处理对于图像处理和计算机图形至关重要。光环是多尺度处理中的核心问题。通过扩展Laplacian金字塔以具有边缘保留特性,几种边缘保护分解可以解决局部拉普拉斯滤波(LLF)。它的处理成本很高;因此,提出了快速LLF的近似加速度,以线性插值多个拉普拉斯金字塔。本文通过傅立叶系列扩展进一步提高了精度,称为傅立叶LLF。我们的结果表明,对于相同数量的金字塔,傅立叶LLF具有更高的精度。此外,傅立叶LLF表现出用于内容自适应过滤的参数自适应性能。该代码可在以下网址获得:https://norishigefukushima.github.io/gaussianfourierpyramid/。
translated by 谷歌翻译
从高度不足的数据中恢复颜色图像和视频是面部识别和计算机视觉中的一项基本且具有挑战性的任务。通过颜色图像和视频的多维性质,在本文中,我们提出了一种新颖的张量完成方法,该方法能够有效探索离散余弦变换(DCT)下张量数据的稀疏性。具体而言,我们介绍了两个``稀疏 +低升级''张量完成模型,以及两种可实现的算法来找到其解决方案。第一个是基于DCT的稀疏加权核标准诱导低级最小化模型。第二个是基于DCT的稀疏加上$ P $换图映射引起的低秩优化模型。此外,我们因此提出了两种可实施的增强拉格朗日算法,以解决基础优化模型。一系列数值实验在内,包括颜色图像介入和视频数据恢复表明,我们所提出的方法的性能要比许多现有的最新张量完成方法更好,尤其是对于缺少数据比率较高的情况。
translated by 谷歌翻译
编码的光圈快照光谱成像(CASSI)是一种用于从一个或几个二维投影测量值重建三维高光谱图像(HSI)的技术。但是,较少的投影测量或更多的光谱通道导致了严重的问题,在这种情况下,必须应用正则化方法。为了显着提高重建的准确性,本文提出了一种基于自然图像的稀疏性和深层图像先验(FAMA-SDIP)的快速交流最小化算法。通过将深层图像(DIP)集成到压缩感应(CS)重建原理中,提出的算法可以在没有任何培训数据集的情况下实现最新结果。广泛的实验表明,FAMA-SDIP方法显着优于模拟和实际HSI数据集的主要主要方法。
translated by 谷歌翻译
在过去的几十年中,已经进行了许多尝试来解决从其相应的低分辨率(LR)对应物中恢复高分辨率(HR)面部形象的问题,这是通常被称为幻觉的任务。尽管通过位置补丁和基于深度学习的方法实现了令人印象深刻的性能,但大多数技术仍然无法恢复面孔的特定特定功能。前一组算法通常在存在更高水平的降解存在下产生模糊和过天气输出,而后者产生的面部有时绝不使得输入图像中的个体类似于个体。在本文中,将引入一种新的面部超分辨率方法,其中幻觉面被迫位于可用训练面跨越的子空间中。因此,与大多数现有面的幻觉技术相比,由于这种面部子空间之前,重建是为了回收特定人的面部特征,而不是仅仅增加图像定量分数。此外,通过最近的3D面部重建领域的进步启发,还呈现了一种有效的3D字典对齐方案,通过该方案,该算法能够处理在不受控制的条件下拍摄的低分辨率面。在几个众所周知的面部数据集上进行的广泛实验中,所提出的算法通过生成详细和接近地面真理结果来显示出色的性能,这在定量和定性评估中通过显着的边距来实现了最先进的面部幻觉算法。
translated by 谷歌翻译
低级别在高光谱图像(HSI)降级任务中很重要。根据张量的奇异值分解定义的张量核标准(TNN)是描述HSI低级别的最新方法。但是,TNN忽略了HSI在解决deno的任务时的某些身体含义,从而导致了次优的降级性能。在本文中,我们提出了用于HSI降解任务的多模式和频率加权张量核定常(MFWTNN)和非凸MFWTNN。首先,我们研究了频率切片的物理含义,并重新考虑其权重以提高TNN的低级别表示能力。其次,我们考虑两个空间维度和HSI的光谱维度之间的相关性,并将上述改进与TNN相结合以提出MFWTNN。第三,我们使用非凸功能来近似频率张量的秩函数,并提出非MFWTNN以更好地放松MFWTNN。此外,我们自适应地选择更大的权重,用于切片,主要包含噪声信息和较小的重量,用于包含配置文件信息的切片。最后,我们开发了基于乘数(ADMM)算法的有效交替方向方法来求解所提出的模型,并在模拟和真实的HSI数据集中证实了我们的模型的有效性。
translated by 谷歌翻译
低级张力完成已广泛用于计算机视觉和机器学习。本文开发了一种新型多模态核心张量分解(MCTF)方法,与张量低秩测量和该措施的更好的非凸弛豫形式(NC-MCTF)。所提出的模型编码由Tucker和T-SVD提供的一般张量的低秩见解,因此预计将在多个方向上同时模拟光谱低秩率,并准确地恢复基于几个观察到的条目的内在低秩结构的数据。此外,我们研究了MCTF和NC-MCTF正则化最小化问题,并设计了一个有效的块连续上限最小化(BSUM)算法来解决它们。该高效的求解器可以将MCTF扩展到各种任务,例如张量完成。一系列实验,包括高光谱图像(HSI),视频和MRI完成,确认了所提出的方法的卓越性能。
translated by 谷歌翻译