上下文信息对于各种计算机视觉任务至关重要,以前的作品通常设计插件模块和结构损失,以有效地提取和汇总全局上下文。这些方法利用优质标签来优化模型,但忽略了精细训练的特征也是宝贵的训练资源,可以将优选的分布引入硬像素(即错误分类的像素)。受到无监督范式的对比学习的启发,我们以监督的方式应用了对比度损失,并重新设计了损失功能,以抛弃无监督学习的刻板印象(例如,积极和负面的不平衡,对锚定计算的混淆)。为此,我们提出了阳性阴性相等的对比损失(PNE损失),这增加了阳性嵌入对锚的潜在影响,并同时对待阳性和阴性样本对。 PNE损失可以直接插入现有的语义细分框架中,并以可忽视的额外计算成本导致出色的性能。我们利用许多经典的分割方法(例如,DeepLabv3,Ocrnet,Upernet)和骨干(例如Resnet,Hrnet,Swin Transformer)进行全面的实验,并在两个基准数据集(例如,例如,例如,,例如城市景观和可可固定)。我们的代码将公开
translated by 谷歌翻译
共同出现的视觉模式使上下文聚集成为语义分割的重要范式。现有的研究重点是建模图像中的上下文,同时忽略图像以下相应类别的有价值的语义。为此,我们提出了一个新颖的软采矿上下文信息,超出了名为McIbi ++的图像范式,以进一步提高像素级表示。具体来说,我们首先设置了动态更新的内存模块,以存储各种类别的数据集级别的分布信息,然后利用信息在网络转发过程中产生数据集级别类别表示。之后,我们为每个像素表示形式生成一个类概率分布,并以类概率分布作为权重进行数据集级上下文聚合。最后,使用汇总的数据集级别和传统的图像级上下文信息来增强原始像素表示。此外,在推论阶段,我们还设计了一种粗到最新的迭代推理策略,以进一步提高分割结果。 MCIBI ++可以轻松地纳入现有的分割框架中,并带来一致的性能改进。此外,MCIBI ++可以扩展到视频语义分割框架中,比基线进行了大量改进。配备MCIBI ++,我们在七个具有挑战性的图像或视频语义分段基准测试中实现了最先进的性能。
translated by 谷歌翻译
这项工作认为有监督的对比度学习语义细分。我们应用对比度学习来增强语义分割网络提取的多尺度特征的判别能力。我们的关键方法论洞察力是利用从模型编码器本身的多个阶段发出的特征空间中的样本,既不需要数据增强,也不需要在线存储库来获取一组不同的样本。为了允许这样的扩展,我们引入了一个高效且有效的抽样过程,可以在多个尺度上对编码器的特征应用对比度损失。此外,通过首先将编码器的多尺度表示形式映射到一个共同的特征空间,我们通过引入跨尺度对比度学习将高分辨率局部特征与低分辨率全球特征联系起来,从而实例化了一种新颖的监督局部全球约束形式。合并,我们的多尺度和跨尺度对比度损失可提高各种模型(DeepLabv3,hrnet,ocrnet,upernet)的性能,以及CNN和Transformer骨架,当对4个不同的数据集进行评估(CityScapes,PascalContext,ADE20K)时,对4个不同的数据集进行了评估。外科(CADIS)域。我们的代码可在https://github.com/rvimla​​b/ms_cs_contrseg上找到。来自天然(CityScapes,PascalContext,ADE20K)的数据集,也是外科手术(CADIS)域。
translated by 谷歌翻译
对比性自我监督学习(CSL)是一种实用解决方案,它以无监督的方法从大量数据中学习有意义的视觉表示。普通的CSL将从神经网络提取的特征嵌入到特定的拓扑结构上。在训练进度期间,对比度损失将同一输入的不同视图融合在一起,同时将不同输入分开的嵌入。 CSL的缺点之一是,损失项需要大量的负样本才能提供更好的相互信息理想。但是,通过较大的运行批量大小增加负样本的数量也增强了错误的负面影响:语义上相似的样品与锚分开,因此降低了下游性能。在本文中,我们通过引入一个简单但有效的对比学习框架来解决这个问题。关键的见解是使用暹罗风格的度量损失来匹配原型内特征,同时增加了原型间特征之间的距离。我们对各种基准测试进行了广泛的实验,其中结果证明了我们方法在提高视觉表示质量方面的有效性。具体而言,我们使用线性探针的无监督预训练的Resnet-50在Imagenet-1K数据集上超过了受访的训练有素的版本。
translated by 谷歌翻译
自动手术场景细分是促进现代手术剧院认知智能的基础。以前的作品依赖于常规的聚合模块(例如扩张的卷积,卷积LSTM),仅利用局部环境。在本文中,我们提出了一个新颖的框架STSWINCL,该框架通过逐步捕获全球环境来探讨互补的视频内和访问间关系以提高细分性能。我们首先开发了层次结构变压器,以捕获视频内关系,其中包括来自邻居像素和以前的帧的富裕空间和时间提示。提出了一个联合时空窗口移动方案,以有效地将这两个线索聚集到每个像素嵌入中。然后,我们通过像素到像素对比度学习探索视频间的关系,该学习很好地结构了整体嵌入空间。开发了一个多源对比度训练目标,可以将视频中的像素嵌入和基础指导分组,这对于学习整个数据的全球属性至关重要。我们在两个公共外科视频基准测试中广泛验证了我们的方法,包括Endovis18 Challenge和Cadis数据集。实验结果证明了我们的方法的有希望的性能,这始终超过了先前的最新方法。代码可在https://github.com/yuemingjin/stswincl上找到。
translated by 谷歌翻译
在视觉识别任务中,很少的学习需要在很少的支持示例中学习对象类别的能力。鉴于深度学习的发展,它的重新流行主要是图像分类。这项工作着重于几片语义细分,这仍然是一个未开发的领域。最近的一些进步通常仅限于单级少量分段。在本文中,我们首先介绍了一个新颖的多通道(类)编码和解码体系结构,该体系结构有效地将多尺度查询信息和多类支持信息融合到一个查询支持嵌入中。多级分割直接在此嵌入后解码。为了获得更好的特征融合,在体系结构中提出了多层注意机制,其中包括对支持功能调制的关注和多尺度组合的注意力。最后,为了增强嵌入式空间学习,引入了一个额外的像素度量学习模块,并在输入图像的像素级嵌入式上提出了三重损失。对标准基准Pascal-5i和Coco-20i进行的广泛实验显示了我们方法对最新技术的明显好处
translated by 谷歌翻译
手术场景细分对于促使机器人手术的认知援助至关重要。但是,以逐帧方式以像素为单位的注释视频是昂贵且耗时的。为了大大减轻标签负担,在这项工作中,我们从机器人手术视频中研究了半监督的场景细分,这实际上是必不可少的,但以前很少探索。我们考虑在等距采样下的临床上适当的注释情况。然后,我们提出了PGV-CL,这是一种新型的伪标签引导的跨视频对比学习方法,以增强场景分割。它有效地利用了未标记的数据来实现可信赖和全球模型的正则化,从而产生更具歧视性的特征表示。具体来说,对于可信赖的表示学习,我们建议合并伪标签以指导对选择,从而获得更可靠的代表对像素对比度。此外,我们将代表学习空间从以前的图像级扩展到交叉视频,该图像可以捕获全球语义以使学习过程受益。我们广泛评估了公共机器人手术数据集Edovis18和公共白内障数据集Cadis的方法。实验结果证明了我们方法的有效性,在不同的标签比下始终超过了最先进的半监督方法,甚至超过了10.1%标签的destovis18上的全面监督培训。
translated by 谷歌翻译
我们解决了几次拍摄语义分割(FSS)的问题,该问题旨在通过一些带有一些注释的样本分段为目标图像中的新型类对象。尽管通过结合基于原型的公制学习来进行最近的进步,但由于其特征表示差,现有方法仍然显示出在极端内部对象变化和语义相似的类别对象下的有限性能。为了解决这个问题,我们提出了一种针对FSS任务定制的双重原型对比学习方法,以有效地捕获代表性的语义。主要思想是通过增加阶级距离来鼓励原型更差异,同时减少了原型特征空间中的课堂距离。为此,我们首先向类别特定的对比丢失丢失具有动态原型字典,该字典字典存储在训练期间的类感知原型,从而实现相同的类原型和不同的类原型是不同的。此外,我们通过压缩每集内语义类的特征分布来提高类别无话的对比损失,以提高未经看不见的类别的概念能力。我们表明,所提出的双重原型对比学习方法优于Pascal-5i和Coco-20i数据集的最先进的FSS方法。该代码可用于:https://github.com/kwonjunn01/dpcl1。
translated by 谷歌翻译
在这项工作中,我们提出了Cluda,这是一种简单而又新颖的方法,用于通过将对比损失纳入学生教师学习范式中,以进行语义分割,以进行语义分割,以利用伪标记,以通过伪标记产生的伪标记。教师网络。更具体地说,我们从编码器中提取多级融合功能图,并通过图像的源目标混合使用不同类别和不同域的对比度损失。我们始终提高各种特征编码器体系结构和语义分割中不同域适应数据集的性能。此外,我们引入了一种学识渊博的对比损失,以改善UDA最先进的多分辨率训练方法。我们在gta $ \ rightarrow $ cityScapes(74.4 miou,+0.6)和Synthia $ \ rightarrow $ cityScapes(67.2 miou,+1.4)数据集上产生最先进的结果。 Cluda有效地证明了UDA中的对比度学习是一种通用方法,可以轻松地将其集成到任何现有的UDA中以进行语义分割任务。有关实施的详细信息,请参考补充材料。
translated by 谷歌翻译
从一个非常少数标记的样品中学习新颖的课程引起了机器学习区域的越来越高。最近关于基于元学习或转移学习的基于范例的研究表明,良好特征空间的获取信息可以是在几次拍摄任务上实现有利性能的有效解决方案。在本文中,我们提出了一种简单但有效的范式,该范式解耦了学习特征表示和分类器的任务,并且只能通过典型的传送学习培训策略从基类嵌入体系结构的特征。为了在每个类别内保持跨基地和新类别和辨别能力的泛化能力,我们提出了一种双路径特征学习方案,其有效地结合了与对比特征结构的结构相似性。以这种方式,内部级别对齐和级别的均匀性可以很好地平衡,并且导致性能提高。三个流行基准测试的实验表明,当与简单的基于原型的分类器结合起来时,我们的方法仍然可以在电感或转换推理设置中的标准和广义的几次射击问题达到有希望的结果。
translated by 谷歌翻译
语义分割是自主车辆了解周围场景的关键技术。当代模型的吸引力表现通常以牺牲重计算和冗长的推理时间为代价,这对于自行车来说是无法忍受的。在低分辨率图像上使用轻量级架构(编码器 - 解码器或双路)或推理,最近的方法实现了非常快的场景解析,即使在单个1080TI GPU上以100多件FPS运行。然而,这些实时方法与基于扩张骨架的模型之间的性能仍有显着差距。为了解决这个问题,我们提出了一家专门为实时语义细分设计的高效底座。所提出的深层双分辨率网络(DDRNET)由两个深部分支组成,之间进行多个双边融合。此外,我们设计了一个名为Deep聚合金字塔池(DAPPM)的新上下文信息提取器,以基于低分辨率特征映射放大有效的接收字段和熔丝多尺度上下文。我们的方法在城市景观和Camvid数据集上的准确性和速度之间实现了新的最先进的权衡。特别是,在单一的2080Ti GPU上,DDRNET-23-Slim在Camvid测试组上的Citycapes试验组102 FPS上的102 FPS,74.7%Miou。通过广泛使用的测试增强,我们的方法优于最先进的模型,需要计算得多。 CODES和培训的型号在线提供。
translated by 谷歌翻译
本文介绍了密集的暹罗网络(Denseiam),这是一个简单的无监督学习框架,用于密集的预测任务。它通过以两种类型的一致性(即像素一致性和区域一致性)之间最大化一个图像的两个视图之间的相似性来学习视觉表示。具体地,根据重叠区域中的确切位置对应关系,Denseiam首先最大化像素级的空间一致性。它还提取一批与重叠区域中某些子区域相对应的区域嵌入,以形成区域一致性。与以前需要负像素对,动量编码器或启发式面膜的方法相反,Denseiam受益于简单的暹罗网络,并优化了不同粒度的一致性。它还证明了简单的位置对应关系和相互作用的区域嵌入足以学习相似性。我们将Denseiam应用于ImageNet,并在各种下游任务上获得竞争性改进。我们还表明,只有在一些特定于任务的损失中,简单的框架才能直接执行密集的预测任务。在现有的无监督语义细分基准中,它以2.1 miou的速度超过了最新的细分方法,培训成本为28%。代码和型号在https://github.com/zwwwayne/densesiam上发布。
translated by 谷歌翻译
虽然监督语义分割存在重大进展,但由于领域偏差,将分段模型部署到解除域来仍然具有挑战性。域适应可以通过将知识从标记的源域传输到未标记的目标域来帮助。以前的方法通常尝试执行对全局特征的适应,然而,通常忽略要计入特征空间中的每个像素的本地语义附属机构,导致较少的可辨性。为解决这个问题,我们提出了一种用于细粒度阶级对齐的新型语义原型对比学习框架。具体地,语义原型提供了用于每个像素鉴别的表示学习的监控信号,并且需要在特征空间中的源极和目标域的每个像素来反映相应的语义原型的内容。通过这种方式,我们的框架能够明确地制作较近的类别的像素表示,并且进一步越来越多地分开,以改善分割模型的鲁棒性以及减轻域移位问题。与最先进的方法相比,我们的方法易于实施并达到优异的结果,如众多实验所展示的那样。代码在[此HTTPS URL](https://github.com/binhuixie/spcl)上公开可用。
translated by 谷歌翻译
具有可穿戴设备的人类活动识别(HAR)是有希望的研究,可以在许多智能医疗保健应用中广泛采用。近年来,基于深度学习的HAR模型已取得了令人印象深刻的识别表现。但是,大多数HAR算法都容易受到多级窗口问题的影响,而多级窗口问题是必不可少的但很少被利用的。在本文中,我们建议通过将细分技术引入HAR来缓解这个具有挑战性的问题,从而产生共同的活动细分和认可。特别是,我们介绍了多个阶段的时间卷积网络(MS-TCN)体系结构,以进行样品级活动预测至关节段并识别活动序列。此外,为了增强HAR对阶层间相似性和阶层内异质性的鲁棒性,已经提出了一个多层次的对比损失,其中包含样本级别和段级对比度,以学习结构良好的嵌入空间的空间更好的活动细分和识别性能。最后,通过全面的实验,我们验证了对两个公共HAR数据集的拟议方法的有效性,从而实现了各种评估指标的重大改进。
translated by 谷歌翻译
卷积神经网络可以在语义细分任务中实现出色的性能。但是,这种神经网络方法在很大程度上依赖于昂贵的像素级注释。半监督学习是解决这个问题的有前途的决议,但其表现仍然远远落后于完全受监督的对手。这项工作提出了一个带有三个模块的跨教师培训框架,可显着改善传统的半监督学习方法。核心是跨教师模块,可以同时减少同伴网络之间的耦合以及教师和学生网络之间的错误积累。此外,我们提出了两个互补的对比学习模块。高级模块可以将高质量的知识从标记的数据传输到未标记的数据,并在特征空间中促进类之间的分离。低级模块可以鼓励从同伴网络中的高质量功能学习的低质量功能。在实验中,跨教师模块显着提高了传统的学生教师方法的性能,而我们的框架在基准数据集上的表现优于现行方法。我们的CTT源代码将发布。
translated by 谷歌翻译
大多数最先进的实例级人类解析模型都采用了两阶段的基于锚的探测器,因此无法避免启发式锚盒设计和像素级别缺乏分析。为了解决这两个问题,我们设计了一个实例级人类解析网络,该网络在像素级别上无锚固且可解决。它由两个简单的子网络组成:一个用于边界框预测的无锚检测头和一个用于人体分割的边缘引导解析头。无锚探测器的头继承了像素样的优点,并有效地避免了对象检测应用中证明的超参数的敏感性。通过引入部分感知的边界线索,边缘引导的解析头能够将相邻的人类部分与彼此区分开,最多可在一个人类实例中,甚至重叠的实例。同时,利用了精炼的头部整合盒子级别的分数和部分分析质量,以提高解析结果的质量。在两个多个人类解析数据集(即CIHP和LV-MHP-V2.0)和一个视频实例级人类解析数据集(即VIP)上进行实验,表明我们的方法实现了超过全球级别和实例级别的性能最新的一阶段自上而下的替代方案。
translated by 谷歌翻译
Contextual information is vital in visual understanding problems, such as semantic segmentation and object detection. We propose a Criss-Cross Network (CCNet) for obtaining full-image contextual information in a very effective and efficient way. Concretely, for each pixel, a novel criss-cross attention module harvests the contextual information of all the pixels on its criss-cross path. By taking a further recurrent operation, each pixel can finally capture the full-image dependencies. Besides, a category consistent loss is proposed to enforce the criss-cross attention module to produce more discriminative features. Overall, CCNet is with the following merits: 1) GPU memory friendly. Compared with the non-local block, the proposed recurrent criss-cross attention module requires 11× less GPU memory usage. 2) High computational efficiency. The recurrent criss-cross attention significantly reduces FLOPs by about 85% of the non-local block. 3) The state-of-the-art performance. We conduct extensive experiments on semantic segmentation benchmarks including Cityscapes, ADE20K, human parsing benchmark LIP, instance segmentation benchmark COCO, video segmentation benchmark CamVid. In particular, our CCNet achieves the mIoU scores of 81.9%, 45.76% and 55.47% on the Cityscapes test set, the ADE20K validation set and the LIP validation set respectively, which are the new state-of-the-art results. The source codes are available at https://github.com/speedinghzl/CCNet.
translated by 谷歌翻译
无监督的域适应性(UDA)旨在使在标记的源域上训练的模型适应未标记的目标域。在本文中,我们提出了典型的对比度适应(PROCA),这是一种无监督域自适应语义分割的简单有效的对比度学习方法。以前的域适应方法仅考虑跨各个域的阶级内表示分布的对齐,而阶层间结构关系的探索不足,从而导致目标域上的对齐表示可能不像在源上歧视的那样容易歧视。域了。取而代之的是,ProCA将类间信息纳入班级原型,并采用以班级为中心的分布对齐进行适应。通过将同一类原型与阳性和其他类原型视为实现以集体为中心的分配对齐方式的负面原型,Proca在经典领域适应任务上实现了最先进的性能,{\ em i.e. text {and} synthia $ \ to $ cityScapes}。代码可在\ href {https://github.com/jiangzhengkai/proca} {proca}获得代码
translated by 谷歌翻译
To date, most existing self-supervised learning methods are designed and optimized for image classification. These pre-trained models can be sub-optimal for dense prediction tasks due to the discrepancy between image-level prediction and pixel-level prediction. To fill this gap, we aim to design an effective, dense self-supervised learning method that directly works at the level of pixels (or local features) by taking into account the correspondence between local features. We present dense contrastive learning (DenseCL), which implements self-supervised learning by optimizing a pairwise contrastive (dis)similarity loss at the pixel level between two views of input images.Compared to the baseline method MoCo-v2, our method introduces negligible computation overhead (only <1% slower), but demonstrates consistently superior performance when transferring to downstream dense prediction tasks including object detection, semantic segmentation and instance segmentation; and outperforms the state-of-the-art methods by a large margin. Specifically, over the strong MoCo-v2 baseline, our method achieves significant improvements of 2.0% AP on PASCAL VOC object detection, 1.1% AP on COCO object detection, 0.9% AP on COCO instance segmentation, 3.0% mIoU on PASCAL VOC semantic segmentation and 1.8% mIoU on Cityscapes semantic segmentation.
translated by 谷歌翻译
在无监督的域自适应(UDA)语义分割中,基于蒸馏的方法目前在性能上占主导地位。但是,蒸馏技术需要使多阶段的过程和许多培训技巧复杂化。在本文中,我们提出了一种简单而有效的方法,可以实现高级蒸馏方法的竞争性能。我们的核心思想是从边界和功能的观点充分探索目标域信息。首先,我们提出了一种新颖的混合策略,以产生具有地面标签的高质量目标域边界。与以前的作品中的源域边界不同,我们选择了高信心目标域区域,然后将其粘贴到源域图像中。这样的策略可以使用正确的标签在目标域(目标域对象区域的边缘)中生成对象边界。因此,可以通过学习混合样品来有效地捕获目标域的边界信息。其次,我们设计了多层对比损失,以改善目标域数据的表示,包括像素级和原型级对比度学习。通过结合两种建议的方法,可以提取更多的判别特征,并且可以更好地解决目标域的硬对象边界。对两个常用基准测试的实验结果(\ textit {i.e。},gta5 $ \ rightarrow $ cityScapes and synthia $ \ rightarrow $ cityScapes)表明,我们的方法在复杂的蒸馏方法上取得了竞争性能。值得注意的是,对于Synthia $ \ rightarrow $ CityScapes方案,我们的方法以$ 57.8 \%$ MIOU和$ 64.6 \%$ MIOU的16堂课和16堂课实现了最先进的性能。代码可在https://github.com/ljjcoder/ehtdi上找到。
translated by 谷歌翻译