We develop an extension of posterior sampling for reinforcement learning (PSRL) that is suited for a continuing agent-environment interface and integrates naturally into agent designs that scale to complex environments. The approach maintains a statistically plausible model of the environment and follows a policy that maximizes expected $\gamma$-discounted return in that model. At each time, with probability $1-\gamma$, the model is replaced by a sample from the posterior distribution over environments. For a suitable schedule of $\gamma$, we establish an $\tilde{O}(\tau S \sqrt{A T})$ bound on the Bayesian regret, where $S$ is the number of environment states, $A$ is the number of actions, and $\tau$ denotes the reward averaging time, which is a bound on the duration required to accurately estimate the average reward of any policy.
translated by 谷歌翻译
在表格设置下,我们研究了折扣马尔可夫决策过程(MDP)的强化学习问题。我们提出了一种名为UCBVI - $ \ Gamma $的基于模型的算法,该算法基于\ emph {面对不确定原理}和伯尔斯坦型奖金的乐观。我们展示了UCBVI - $ \ Gamma $实现了一个$ \ tilde {o} \ big({\ sqrt {sat}} / {(1- \ gamma)^ {1.5}} \ big)$后悔,在哪里$ s $是州的数量,$ a $是行动的数量,$ \ gamma $是折扣因子,$ t $是步数。此外,我们构建了一类硬MDP并表明对于任何算法,预期的遗憾是至少$ \ tilde {\ omega} \ big({\ sqrt {sat}} / {(1- \ gamma)^ {1.5}} \大)$。我们的上限与对数因子的最低限度相匹配,这表明UCBVI - $ \ Gamma $几乎最小的贴现MDP。
translated by 谷歌翻译
Model-free reinforcement learning (RL) algorithms, such as Q-learning, directly parameterize and update value functions or policies without explicitly modeling the environment. They are typically simpler, more flexible to use, and thus more prevalent in modern deep RL than model-based approaches. However, empirical work has suggested that model-free algorithms may require more samples to learn [7,22]. The theoretical question of "whether model-free algorithms can be made sample efficient" is one of the most fundamental questions in RL, and remains unsolved even in the basic scenario with finitely many states and actions.We prove that, in an episodic MDP setting, Q-learning with UCB exploration achieves regret Õ( √ H 3 SAT ), where S and A are the numbers of states and actions, H is the number of steps per episode, and T is the total number of steps. This sample efficiency matches the optimal regret that can be achieved by any model-based approach, up to a single √ H factor. To the best of our knowledge, this is the first analysis in the model-free setting that establishes √ T regret without requiring access to a "simulator." * The first two authors contributed equally.
translated by 谷歌翻译
In reinforcement learning the Q-values summarize the expected future rewards that the agent will attain. However, they cannot capture the epistemic uncertainty about those rewards. In this work we derive a new Bellman operator with associated fixed point we call the `knowledge values'. These K-values compress both the expected future rewards and the epistemic uncertainty into a single value, so that high uncertainty, high reward, or both, can yield high K-values. The key principle is to endow the agent with a risk-seeking utility function that is carefully tuned to balance exploration and exploitation. When the agent follows a Boltzmann policy over the K-values it yields a Bayes regret bound of $\tilde O(L \sqrt{S A T})$, where $L$ is the time horizon, $S$ is the total number of states, $A$ is the number of actions, and $T$ is the number of elapsed timesteps. We show deep connections of this approach to the soft-max and maximum-entropy strands of research in reinforcement learning.
translated by 谷歌翻译
在线强化学习(RL)中的挑战之一是代理人需要促进对环境的探索和对样品的利用来优化其行为。无论我们是否优化遗憾,采样复杂性,状态空间覆盖范围或模型估计,我们都需要攻击不同的勘探开发权衡。在本文中,我们建议在分离方法组成的探索 - 剥削问题:1)“客观特定”算法(自适应)规定哪些样本以收集到哪些状态,似乎它可以访问a生成模型(即环境的模拟器); 2)负责尽可能快地生成规定样品的“客观无关的”样品收集勘探策略。建立最近在随机最短路径问题中进行探索的方法,我们首先提供一种算法,它给出了每个状态动作对所需的样本$ B(S,a)$的样本数量,需要$ \ tilde {o} (bd + d ^ {3/2} s ^ 2 a)收集$ b = \ sum_ {s,a} b(s,a)$所需样本的$时间步骤,以$ s $各国,$ a $行动和直径$ d $。然后我们展示了这种通用探索算法如何与“客观特定的”策略配对,这些策略规定了解决各种设置的样本要求 - 例如,模型估计,稀疏奖励发现,无需无成本勘探沟通MDP - 我们获得改进或新颖的样本复杂性保证。
translated by 谷歌翻译
我们介绍了一种普遍的策略,可实现有效的多目标勘探。它依赖于adagoal,一种基于简单约束优化问题的新的目标选择方案,其自适应地针对目标状态,这既不是太困难也不是根据代理目前的知识达到的。我们展示了Adagoal如何用于解决学习$ \ epsilon $ -optimal的目标条件的政策,以便在$ L $ S_0 $ S_0 $奖励中获得的每一个目标状态,以便在$ S_0 $中获取。免费马尔可夫决策过程。在标准的表格外壳中,我们的算法需要$ \ tilde {o}(l ^ 3 s a \ epsilon ^ { - 2})$探索步骤,这几乎很少最佳。我们还容易在线性混合Markov决策过程中实例化Adagoal,其产生具有线性函数近似的第一目标导向的PAC保证。除了强大的理论保证之外,迈克纳队以现有方法的高级别算法结构为锚定,为目标条件的深度加固学习。
translated by 谷歌翻译
最近有兴趣了解地平线依赖于加固学习(RL)的样本复杂性。值得注意的是,对于具有Horizo​​ n长度$ H $的RL环境,之前的工作表明,使用$ \ mathrm {polylog}(h)有可能学习$ o(1)$ - 最佳策略的可能大致正确(pac)算法$当州和行动的数量固定时的环境交互剧集。它尚不清楚$ \ mathrm {polylog}(h)$依赖性是必要的。在这项工作中,我们通过开发一种算法来解决这个问题,该算法在仅使用ONTO(1)美元的环境交互的同时实现相同的PAC保证,完全解决RL中样本复杂性的地平线依赖性。我们通过(i)在贴现和有限地平线马尔可夫决策过程(MDP)和(ii)在MDP中的新型扰动分析中建立价值函数之间的联系。我们相信我们的新技术具有独立兴趣,可在RL中应用相关问题。
translated by 谷歌翻译
我们研究了随机的最短路径(SSP)问题,其中代理商必须以最短的预计成本达到目标状态。在问题的学习制定中,代理商没有关于模型的成本和动态的知识。她反复与k $剧集的型号交互,并且必须尽量减少她的遗憾。在这项工作中,我们表明这个设置的Minimax遗憾是$ \ widetilde o(\ sqrt {(b_ \ star ^ 2 + b_ \ star)| s | a | a | k})$ why $ b_ \ star $ a符合来自任何州的最佳政策的预期成本,$ S $是状态空间,$ a $是行动空间。此相匹配的$ \欧米茄(\ SQRT {B_ \星^ 2 | S | |甲| K})$下界Rosenberg等人的。 [2020]对于$ b_ \ star \ ge 1 $,并改善了他们的遗憾,以\ sqrt {| s |} $ \ you的遗憾。对于$ b_ \ star <1 $我们证明$ \ omega的匹配下限(\ sqrt {b_ \ star | s | a | a | k})$。我们的算法基于SSP的新颖减少到有限地平线MDP。为此,我们为有限地域设置提供了一种算法,其前期遗憾遗憾地取决于最佳政策的预期成本,并且仅对地平线上的对数。
translated by 谷歌翻译
本文研究了钢筋学习中随机价值函数的遗为最小化。在表格有限地平线马尔可夫决策过程中,我们引入了一种典型的汤普森采样(TS)-like算法的剪切变体,随机最小二乘值迭代(RLSVI)。我们的$ \ tilde {\ mathrm {o}}(h ^ 2s \ sqrt {at})$高概率最坏情况后悔绑定改善了rlsvi的先前最锐化的最糟糕的遗憾界限,并匹配现有的状态 - 基于最糟糕的TS的遗憾界限。
translated by 谷歌翻译
我们研究了在随机最短路径(SSP)设置中的学习问题,其中代理试图最小化在达到目标状态之前累积的预期成本。我们设计了一种新型基于模型的算法EB-SSP,仔细地偏离了经验转变,并通过探索奖励来赋予经验成本,以诱导乐观的SSP问题,其相关价值迭代方案被保证收敛。我们证明了EB-SSP实现了Minimax后悔率$ \ tilde {o}(b _ {\ star} \ sqrt {sak})$,其中$ k $是剧集的数量,$ s $是状态的数量, $ a $是行动的数量,而B _ {\ star} $绑定了从任何状态的最佳策略的预期累积成本,从而缩小了下限的差距。有趣的是,EB-SSP在没有参数的同时获得此结果,即,它不需要任何先前的$ B _ {\ star} $的知识,也不需要$ t _ {\ star} $,它绑定了预期的时间 ​​- 任何州的最佳政策的目标。此外,我们说明了各种情况(例如,当$ t _ {\ star} $的订单准确估计可用时,遗憾地仅包含对$ t _ {\ star} $的对数依赖性,因此产生超出有限范围MDP设置的第一个(几乎)的免地相会遗憾。
translated by 谷歌翻译
我们研究了具有线性函数近似增强学习中的随机最短路径(SSP)问题,其中过渡内核表示为未知模型的线性混合物。我们将此类别的SSP问题称为线性混合物SSP。我们提出了一种具有Hoeffding-type置信度的新型算法,用于学习线性混合物SSP,可以获得$ \ tilde {\ Mathcal {o}}}}(d B _ {\ star}^{1.5} \ sqrt {k/c_ {k/c_ {k/c_ {k/c_ { \ min}})$遗憾。这里$ k $是情节的数量,$ d $是混合模型中功能映射的维度,$ b _ {\ star} $限制了最佳策略的预期累积成本,$ c _ {\ min}>> 0 $是成本函数的下限。当$ c _ {\ min} = 0 $和$ \ tilde {\ mathcal {o}}}(k^{2/3})$遗憾时,我们的算法也适用于情况。据我们所知,这是第一个具有sublrinear遗憾保证线性混合物SSP的算法。此外,我们设计了精致的伯恩斯坦型信心集并提出了改进的算法,该算法可实现$ \ tilde {\ Mathcal {o}}}(d b _ {\ star} \ sqrt {k/c/c/c {k/c _ {\ min}}) $遗憾。为了补充遗憾的上限,我们还证明了$ \ omega(db _ {\ star} \ sqrt {k})$的下限。因此,我们的改进算法将下限匹配到$ 1/\ sqrt {c _ {\ min}} $ factor和poly-logarithmic因素,从而实现了近乎最佳的遗憾保证。
translated by 谷歌翻译
我们研究了基于模型的未识别的强化学习,用于部分可观察到的马尔可夫决策过程(POMDPS)。我们认为的Oracle是POMDP的最佳政策,其在无限视野的平均奖励方面具有已知环境。我们为此问题提出了一种学习算法,基于隐藏的马尔可夫模型的光谱方法估计,POMDPS中的信念错误控制以及在线学习的上等信心结合方法。我们为提出的学习算法建立了$ o(t^{2/3} \ sqrt {\ log t})$的后悔界限,其中$ t $是学习范围。据我们所知,这是第一种算法,这是对我们学习普通POMDP的甲骨文的统一性后悔。
translated by 谷歌翻译
强化学习理论集中在两个基本问题上:实现低遗憾,并确定$ \ epsilon $ - 最佳政策。虽然简单的减少允许人们应用低温算法来获得$ \ epsilon $ - 最佳政策并达到最坏的最佳速率,但尚不清楚低regret算法是否可以获得实例 - 最佳率的策略识别率。我们表明这是不可能的 - 在遗憾和确定$ \ epsilon $ - 最佳政策之间以最佳的利率确定了基本的权衡。由于我们的负面发现,我们提出了针对PAC表格增强学习实例依赖性样本复杂性的新量度,该方法明确说明了基础MDP中可达到的国家访问分布。然后,我们提出和分析一种基于计划的新型算法,该算法达到了这种样本的复杂性 - 产生的复杂性会随着次要差距和状态的“可达到性”而缩放。我们显示我们的算法几乎是最小的最佳选择,并且在一些示例中,我们实例依赖性样品复杂性比最差案例界限可显着改善。
translated by 谷歌翻译
We consider the problem of provably optimal exploration in reinforcement learning for finite horizon MDPs. We show that an optimistic modification to value iteration achieves a regret bound of O(where H is the time horizon, S the number of states, A the number of actions and T the number of time-steps. This result improves over the best previous known bound O(HS √ AT ) achieved by the UCRL2 algorithm of Jaksch et al. ( 2010). The key significance of our new results is that when T ≥ H 3 S 3 A and SA ≥ H, it leads to a regret of O( √ HSAT ) that matches the established lower bound of Ω( √ HSAT ) up to a logarithmic factor. Our analysis contains two key insights. We use careful application of concentration inequalities to the optimal value function as a whole, rather than to the transitions probabilities (to improve scaling in S), and we define Bernstein-based "exploration bonuses" that use the empirical variance of the estimated values at the next states (to improve scaling in H).
translated by 谷歌翻译
我们在加固学习中使用汤普森采样(TS) - 样算法中的随机价值函数研究探索。这种类型的算法享有有吸引力的经验性能。我们展示当我们使用1)每一集中的单个随机种子,而2)伯尼斯坦型噪声幅度,我们获得了最坏的情况$ \ widetilde {o}左(h \ sqrt {sat} \右)$遗憾绑定了焦点时间 - 不均匀的马尔可夫决策过程,其中$ S $是国家空间的大小,$ a $的是行动空间的大小,$ h $是规划地平线,$ t $是互动的数量。这种绑定的多项式基于随机值函数的TS样算法的所有现有界限,并且首次匹配$ \ Omega \左(H \ SQRT {SAT}右)$下限到对数因子。我们的结果强调随机勘探可以近乎最佳,这是以前仅通过乐观算法实现的。为了实现所需的结果,我们开发1)新的剪辑操作,以确保持续持续的概率和悲观的概率是较低的常数,并且2)用于分析估计误差的绝对值的新递归公式。后悔。
translated by 谷歌翻译
Modern Reinforcement Learning (RL) is commonly applied to practical problems with an enormous number of states, where function approximation must be deployed to approximate either the value function or the policy. The introduction of function approximation raises a fundamental set of challenges involving computational and statistical efficiency, especially given the need to manage the exploration/exploitation tradeoff. As a result, a core RL question remains open: how can we design provably efficient RL algorithms that incorporate function approximation? This question persists even in a basic setting with linear dynamics and linear rewards, for which only linear function approximation is needed.This paper presents the first provable RL algorithm with both polynomial runtime and polynomial sample complexity in this linear setting, without requiring a "simulator" or additional assumptions. Concretely, we prove that an optimistic modification of Least-Squares Value Iteration (LSVI)-a classical algorithm frequently studied in the linear setting-achieves O( √ d 3 H 3 T ) regret, where d is the ambient dimension of feature space, H is the length of each episode, and T is the total number of steps. Importantly, such regret is independent of the number of states and actions.
translated by 谷歌翻译
逆增强学习(IRL)是从专家演示中推断奖励功能的强大范式。许多IRL算法都需要已知的过渡模型,有时甚至是已知的专家政策,或者至少需要访问生成模型。但是,对于许多现实世界应用,这些假设太强了,在这些应用程序中,只能通过顺序相互作用访问环境。我们提出了一种新颖的IRL算法:逆增强学习(ACEIRL)的积极探索,该探索积极探索未知的环境和专家政策,以快速学习专家的奖励功能并确定良好的政策。 Aceirl使用以前的观察来构建置信区间,以捕获合理的奖励功能,并找到关注环境最有用区域的勘探政策。 Aceirl是使用样品复杂性界限的第一种活动IRL的方法,不需要环境的生成模型。在最坏情况下,Aceirl与活性IRL的样品复杂性与生成模型匹配。此外,我们建立了一个与问题相关的结合,该结合将Aceirl的样品复杂性与给定IRL问题的次级隔离间隙联系起来。我们在模拟中对Aceirl进行了经验评估,发现它的表现明显优于更幼稚的探索策略。
translated by 谷歌翻译
我们研究了基于模型的无奖励加强学习,具有ePiSodic Markov决策过程的线性函数近似(MDP)。在此设置中,代理在两个阶段工作。在勘探阶段,代理商与环境相互作用并在没有奖励的情况下收集样品。在规划阶段,代理商给出了特定的奖励功能,并使用从勘探阶段收集的样品来学习良好的政策。我们提出了一种新的可直接有效的算法,称为UCRL-RFE在线性混合MDP假设,其中MDP的转换概率内核可以通过线性函数参数化,在状态,动作和下一个状态的三联体上定义的某些特征映射上参数化。我们展示了获得$ \ epsilon $-Optimal策略进行任意奖励函数,Ucrl-RFE需要以大多数$ \ tilde {\ mathcal {o}}来进行采样(h ^ 5d ^ 2 \ epsilon ^ { - 2})勘探阶段期间的$派对。在这里,$ H $是集的长度,$ d $是特征映射的尺寸。我们还使用Bernstein型奖金提出了一种UCRL-RFE的变种,并表明它需要在大多数$ \ TINDE {\ MATHCAL {o}}(H ^ 4D(H + D)\ epsilon ^ { - 2})进行样本$达到$ \ epsilon $ -optimal政策。通过构建特殊类的线性混合MDPS,我们还证明了对于任何无奖励算法,它需要至少为$ \ TINDE \ OMEGA(H ^ 2d \ epsilon ^ { - 2})$剧集来获取$ \ epsilon $ -optimal政策。我们的上限与依赖于$ \ epsilon $的依赖性和$ d $ if $ h \ ge d $。
translated by 谷歌翻译
我们考虑了马尔可夫决策过程(CMDP)的问题,其中代理与Markov Unichain决策过程进行交互。在每次互动中,代理都会获得奖励。此外,还有$ K $成本功能。该代理商的目标是最大程度地提高长期平均奖励,同时使$ k $的长期平均成本低于一定阈值。在本文中,我们提出了CMDP-PSRL,这是一种基于后取样的算法,使用该算法,代理可以学习与CMDP相互作用的最佳策略。此外,对于具有$ s $州的MDP,$ A $ ACTICE和DIAMETER $ D $,我们证明,遵循CMDP-PSRL算法,代理商可能会束缚不累积最佳策略奖励的遗憾。 (poly(dsa)\ sqrt {t})$。此外,我们表明,任何$ k $约束的违规行为也受$ \ tilde {o}(poly(dsa)\ sqrt {t})$的限制。据我们所知,这是第一批获得$ \ tilde {o}(\ sqrt {t})$遗憾的Ergodic MDP的界限,并具有长期平均约束。
translated by 谷歌翻译
无奖励强化学习(RL)考虑了代理在探索过程中无法访问奖励功能的设置,但必须提出仅在探索后才揭示的任意奖励功能的近乎最佳的政策。在表格环境中,众所周知,这是一个比奖励意识(PAC)RL(代理在探索过程中访问奖励功能)更困难的问题$ | \ Mathcal {s} | $,状态空间的大小。我们表明,在线性MDP的设置中,这种分离不存在。我们首先在$ d $二维线性MDP中开发了一种计算高效算法,其样品复杂度比例为$ \ widetilde {\ Mathcal {o}}(d^2 H^5/\ epsilon^2)$ 。然后,我们显示出$ \ omega(d^2 h^2/\ epsilon^2)$的匹配尺寸依赖性的下限,该限制为奖励感知的RL设置。据我们所知,我们的方法是第一个在线性MDP中实现最佳$ d $依赖性的计算有效算法,即使在单次奖励PAC设置中也是如此。我们的算法取决于一种新的程序,该过程有效地穿越了线性MDP,在任何给定的``特征方向''中收集样品,并在最大状态访问概率(线性MDP等效)中享受最佳缩放样品复杂性。我们表明,该探索过程也可以应用于解决线性MDP中````良好条件''''协变量的问题。
translated by 谷歌翻译