开发预测灾难性自然现象的方法比以往任何时候都更为重要,龙卷风是自然界中最危险的。由于天气的不可预测性,抵消它们并不是一件容易的事,如今,它主要由专家气象学家(解释气象模型)进行。在本文中,我们提出了一个用于早期检测龙卷风的系统,验证了其在现实世界中的有效性,并利用已经在全球广泛普遍存在的气象数据收集系统。我们的系统能够预测龙卷风,最大概率为84%,直到活动前五天,在一个新颖的数据集中,有5000多个龙卷风和非龙卷风事件。数据集和复制我们的结果的代码可在以下网址获得:https://tinyurl.com/3brsfwpk
translated by 谷歌翻译
野火越来越多地影响环境,人类健康和安全。在加利福尼亚前20名野火中,2020 - 2021年的野火比上世纪的燃烧更大。加利福尼亚的2018年野火季节造成了1485亿美元的损失。在数百万受影响的人中,由于不足的警报手段,残疾人(约占世界人口的15%)受到不成比例的影响。在该项目中,基于先进的机器学习体系结构开发了多模式野火预测和个性化预警系统。从2012年到2018年的环境保护局和历史野火数据的传感器数据已编译,以建立一个全面的野火数据库,即同类最大的数据库。接下来,设计了一种新型的U-Convolutional-LSTM(长短期记忆)神经网络,设计了一种特殊的体系结构,可从连续的环境参数中提取关键的空间和时间特征,以指示即将来临的野火。环境和气象因素被纳入数据库,并分类为主要指标和落后指标,分别与野火构想和传播的风险相关。此外,地质数据还用于提供更好的野火风险评估。这种新颖的时空神经网络使用传统的卷积神经网络实现了> 97%的精度,而左右的卷积神经网络则达到了约76%,成功地预测了2018年2018年最具破坏性的野火,提前5-14天提前5-14天。最后,提出了一种个性化的预警系统,该警告系统针对有感觉障碍或呼吸系统加剧条件的人量身定制。该技术将使消防部门在袭击之前预测和防止野火,并为处于危险中的个人提供早期警告以更好地准备,从而挽救生命并减少经济损失。
translated by 谷歌翻译
鉴于人工智能(AI)和机器学习(ML)方法越来越多,环境科学各方面的方法,我们必须讨论关于AI的道德和负责任使用。事实上,大大可以从其他领域学习,通常是最好的意图,但经常导致意外的社会后果,如刑事司法系统中的硬编码种族偏见或通过金融体系增加经济不平等。常见的误解是,当使用AI时,环境科学对这种非预期的后果免疫,因为大多数数据来自观察,并且AI算法基于数学公式,这些公式通常被视为物镜。在本文中,我们争论可能就是这样。使用具体示例,我们展示了许多方式,其中使用AI可以引入环境科学的类似后果。本文将刺激讨论和研究努力。作为一个社区,我们应该通过引入AI来避免重复在其他域中的任何可预见的错误。事实上,通过适当的预防措施,AI可以成为帮助{\它减少}气候和环境不公正的伟大工具。我们主要关注天气和气候示例,但结论普遍存在环境科学中。
translated by 谷歌翻译
消耗的湖冰是气候变化指标,就像海平面上升或冰川静修一样。监测冰冰物候(LIP)是有用的,因为长期冻结和融化模式充当了哨兵,以了解区域和全球气候变化。我们报告了一项针对瑞士奥伯伦加丁地区的研究,那里有几个中小型山区湖泊。我们从光学卫星图像中观察到唇部事件,例如冻结,分手和冰盖持续时间(2000-2020)。我们通过对这些高山湖泊的湖泊冰层估算有监督的机器学习的空间分辨图来分析MODIS图像的时间序列。为了训练分类器,我们依靠基于网络摄像头图像手动注释的参考数据。从冰图中,我们得出了长期的唇部趋势。由于网络摄像头数据仅适用于两个冬季,因此我们与操作MODIS和VIIRS SNOW PRODUCTS进行了交叉检查结果。我们发现,对于湖泊和西瓦普拉纳(Lakes Sils)和Silvaplana,每年的完全冻结持续时间为-0.76和-0.89天。此外,我们观察到唇部趋势与在附近气象站测得的气候数据的合理相关性。我们注意到,平均冬季空气温度与冻结持续时间和分手事件以及与冻结事件的正相关性具有负相关性。此外,我们观察到在冬季,阳光与冻结持续时间和分手事件之间存在很强的负相关性。
translated by 谷歌翻译
野火预测对于减少灾害风险和环境可持续性至关重要。我们将每日火灾危险预测作为机器学习任务,使用过去十年来预测下一天的火灾危险。为此,我们收集,预先处理和协调开放式DataCube,其中包括一组协变量,共同影响火灾发生和传播,例如天气条件,卫星衍生的产品,与人类活动相关的地形特征和变量。我们实施各种深度学习(DL)模型,以捕获空间,时间或时空上下文,并将它们与随机林(RF)基线进行比较。我们发现空间或时间上下文足以超越RF,而利用时空上下文的Convlstm在接收器的操作特性为0.926的接收器下的测试区域最佳地执行。我们基于DL的概念证明提供了全国范围的日常火灾危险地图,其空间分辨率高于现有的运营解决方案。
translated by 谷歌翻译
预测野火蔓延对于土地管理和灾害准备至关重要。为此,我们呈现“第二天野火蔓延,”一种策划,大规模的多变量数据集,历史野火的历史野火占据了美国近十年的遥感数据。与基于地球观测卫星的现有火灾数据集相比,我们的数据集合了2D解释性变量(例如,地形,植被,天气,干旱指数,人口密度)与2D区域对齐,提供了丰富的数据为机器学习设置。为了演示该数据集的有用性,我们实现了一个卷积的AutoEncoder,它利用了该数据的空间信息来预测野火扩散。我们将神经网络与其他机器学习模型的性能进行比较:Logistic回归和随机林。该数据集可以用作基于遥感数据开发野火传播模型的基准,以便有一天的提前期。
translated by 谷歌翻译
本文研究了使用风险模型来预测电力基础设施引起的野火的时间和位置。我们的数据包括由2015年至2019年间在太平洋天然气和电力领域收集的网格基础设施触发的历史点火和降线点,以及各种天气,植被以及网格基础设施的高分辨率数据,包括位置,年龄,材料。通过这些数据,我们探讨了一系列机器学习方法和管理培训数据不平衡的策略。我们获得的接收器操作特性下的最佳区域为0.776,用于分配馈线点火器,传输线向下事件为0.824,均使用基于直方图的梯度增强树算法(HGB),并带有下采样。然后,我们使用这些模型来确定哪些信息提供了最预测的价值。线长度后,我们发现天气和植被特征主导着点火或降线风险的最重要功能。分配点火模型显示出更大的依赖性对慢变化的植被变量,例如燃烧指数,能量释放含量和树高度,而传输线模型更多地依赖于主要天气变量,例如风速和降水量。这些结果表明,改进的植被建模对进料机点火风险模型的重要性,以及对传输线模型的天气预测改进。我们观察到,基础架构功能可以对风险模型预测能力进行较小但有意义的改进。
translated by 谷歌翻译
Wind power forecasting helps with the planning for the power systems by contributing to having a higher level of certainty in decision-making. Due to the randomness inherent to meteorological events (e.g., wind speeds), making highly accurate long-term predictions for wind power can be extremely difficult. One approach to remedy this challenge is to utilize weather information from multiple points across a geographical grid to obtain a holistic view of the wind patterns, along with temporal information from the previous power outputs of the wind farms. Our proposed CNN-RNN architecture combines convolutional neural networks (CNNs) and recurrent neural networks (RNNs) to extract spatial and temporal information from multi-dimensional input data to make day-ahead predictions. In this regard, our method incorporates an ultra-wide learning view, combining data from multiple numerical weather prediction models, wind farms, and geographical locations. Additionally, we experiment with global forecasting approaches to understand the impact of training the same model over the datasets obtained from multiple different wind farms, and we employ a method where spatial information extracted from convolutional layers is passed to a tree ensemble (e.g., Light Gradient Boosting Machine (LGBM)) instead of fully connected layers. The results show that our proposed CNN-RNN architecture outperforms other models such as LGBM, Extra Tree regressor and linear regression when trained globally, but fails to replicate such performance when trained individually on each farm. We also observe that passing the spatial information from CNN to LGBM improves its performance, providing further evidence of CNN's spatial feature extraction capabilities.
translated by 谷歌翻译
冠状质量弹出(CME)是最地理化的空间天气现象,与大型地磁风暴有关,有可能引起电信,卫星网络中断,电网损失和故障的干扰。因此,考虑到这些风暴对人类活动的潜在影响,对CME的地理效果的准确预测至关重要。这项工作着重于在接近太阳CME的白光冠状动脉数据集中训练的不同机器学习方法,以估计这种新爆发的弹出是否有可能诱导地磁活动。我们使用逻辑回归,k-nearest邻居,支持向量机,向前的人工神经网络以及整体模型开发了二进制分类模型。目前,我们限制了我们的预测专门使用太阳能发作参数,以确保延长警告时间。我们讨论了这项任务的主要挑战,即我们数据集中的地理填充和无效事件的数量以及它们的众多相似之处以及可用变量数量有限的极端失衡。我们表明,即使在这种情况下,这些模型也可以达到足够的命中率。
translated by 谷歌翻译
The cyber-physical convergence is opening up new business opportunities for industrial operators. The need for deep integration of the cyber and the physical worlds establishes a rich business agenda towards consolidating new system and network engineering approaches. This revolution would not be possible without the rich and heterogeneous sources of data, as well as the ability of their intelligent exploitation, mainly due to the fact that data will serve as a fundamental resource to promote Industry 4.0. One of the most fruitful research and practice areas emerging from this data-rich, cyber-physical, smart factory environment is the data-driven process monitoring field, which applies machine learning methodologies to enable predictive maintenance applications. In this paper, we examine popular time series forecasting techniques as well as supervised machine learning algorithms in the applied context of Industry 4.0, by transforming and preprocessing the historical industrial dataset of a packing machine's operational state recordings (real data coming from the production line of a manufacturing plant from the food and beverage domain). In our methodology, we use only a single signal concerning the machine's operational status to make our predictions, without considering other operational variables or fault and warning signals, hence its characterization as ``agnostic''. In this respect, the results demonstrate that the adopted methods achieve a quite promising performance on three targeted use cases.
translated by 谷歌翻译
后处理整体预测系统可以改善天气预报,尤其是对于极端事件预测。近年来,已经开发出不同的机器学习模型来提高后处理步骤的质量。但是,这些模型在很大程度上依赖数据并生成此类合奏成员需要以高计算成本的数值天气预测模型进行多次运行。本文介绍了ENS-10数据集,由十个合奏成员组成,分布在20年中(1998-2017)。合奏成员是通过扰动数值天气模拟来捕获地球的混乱行为而产生的。为了代表大气的三维状态,ENS-10在11个不同的压力水平以及0.5度分辨率的表面中提供了最相关的大气变量。该数据集以48小时的交货时间针对预测校正任务,这实质上是通过消除合奏成员的偏见来改善预测质量。为此,ENS-10为预测交货时间t = 0、24和48小时(每周两个数据点)提供了天气变量。我们在ENS-10上为此任务提供了一组基线,并比较了它们在纠正不同天气变量预测时的性能。我们还评估了使用数据集预测极端事件的基准。 ENS-10数据集可在创意共享归因4.0国际(CC By 4.0)许可下获得。
translated by 谷歌翻译
了解极端事件及其可能性是研究气候变化影响,风险评估,适应和保护生物的关键。在这项工作中,我们开发了一种方法来构建极端热浪的预测模型。这些模型基于卷积神经网络,对极长的8,000年气候模型输出进行了培训。由于极端事件之间的关系本质上是概率的,因此我们强调概率预测和验证。我们证明,深度神经网络适用于法国持续持续14天的热浪,快速动态驱动器提前15天(500 hpa地球电位高度场),并且在慢速较长的交货时间内,慢速物理时间驱动器(土壤水分)。该方法很容易实现和通用。我们发现,深神经网络选择了与北半球波数字3模式相关的极端热浪。我们发现,当将2米温度场添加到500 HPA地球电位高度和土壤水分场中时,2米温度场不包含任何新的有用统计信息。主要的科学信息是,训练深层神经网络预测极端热浪的发生是在严重缺乏数据的情况下发生的。我们建议大多数其他应用在大规模的大气和气候现象中都是如此。我们讨论了处理缺乏数据制度的观点,例如罕见的事件模拟,以及转移学习如何在后一种任务中发挥作用。
translated by 谷歌翻译
Flooding is one of the most disastrous natural hazards, responsible for substantial economic losses. A predictive model for flood-induced financial damages is useful for many applications such as climate change adaptation planning and insurance underwriting. This research assesses the predictive capability of regressors constructed on the National Flood Insurance Program (NFIP) dataset using neural networks (Conditional Generative Adversarial Networks), decision trees (Extreme Gradient Boosting), and kernel-based regressors (Gaussian Process). The assessment highlights the most informative predictors for regression. The distribution for claims amount inference is modeled with a Burr distribution permitting the introduction of a bias correction scheme and increasing the regressor's predictive capability. Aiming to study the interaction with physical variables, we incorporate Daymet rainfall estimation to NFIP as an additional predictor. A study on the coastal counties in the eight US South-West states resulted in an $R^2=0.807$. Further analysis of 11 counties with a significant number of claims in the NFIP dataset reveals that Extreme Gradient Boosting provides the best results, that bias correction significantly improves the similarity with the reference distribution, and that the rainfall predictor strengthens the regressor performance.
translated by 谷歌翻译
The tropical cyclone formation process is one of the most complex natural phenomena which is governed by various atmospheric, oceanographic, and geographic factors that varies with time and space. Despite several years of research, accurately predicting tropical cyclone formation remains a challenging task. While the existing numerical models have inherent limitations, the machine learning models fail to capture the spatial and temporal dimensions of the causal factors behind TC formation. In this study, a deep learning model has been proposed that can forecast the formation of a tropical cyclone with a lead time of up to 60 hours with high accuracy. The model uses the high-resolution reanalysis data ERA5 (ECMWF reanalysis 5th generation), and best track data IBTrACS (International Best Track Archive for Climate Stewardship) to forecast tropical cyclone formation in six ocean basins of the world. For 60 hours lead time the models achieve an accuracy in the range of 86.9% - 92.9% across the six ocean basins. The model takes about 5-15 minutes of training time depending on the ocean basin, and the amount of data used and can predict within seconds, thereby making it suitable for real-life usage.
translated by 谷歌翻译
准确地估算主要山区盆地中的积雪对于水资源经理来说至关重要,以便做出影响当地和全球经济,野生动植物和公共政策的决策。目前,此估计需要多个配备LIDAR的飞机飞行或原位测量值,两者均昂贵,稀疏和对可访问区域有偏见。在本文中,我们证明了来自多个,公开可用的卫星和天气数据源的空间和时间信息的融合,可以估算关键山区的积雪。我们的多源模型的表现优于单源估计值5.0英寸RMSE,并且优于稀疏的原位测量值的估计值1.2英寸RMSE。
translated by 谷歌翻译
评估能源转型和能源市场自由化对资源充足性的影响是一种越来越重要和苛刻的任务。能量系统的上升复杂性需要足够的能量系统建模方法,从而提高计算要求。此外,随着复杂性,同样调用概率评估和场景分析同样增加不确定性。为了充分和高效地解决这些各种要求,需要来自数据科学领域的新方法来加速当前方法。通过我们的系统文献综述,我们希望缩小三个学科之间的差距(1)电力供应安全性评估,(2)人工智能和(3)实验设计。为此,我们对所选应用领域进行大规模的定量审查,并制作彼此不同学科的合成。在其他发现之外,我们使用基于AI的方法和应用程序的AI方法和应用来确定电力供应模型的复杂安全性的元素,并作为未充分涵盖的应用领域的储存调度和(非)可用性。我们结束了推出了一种新的方法管道,以便在评估电力供应安全评估时充分有效地解决当前和即将到来的挑战。
translated by 谷歌翻译
机器学习(ML)是指根据大量数据预测有意义的输出或对复杂系统进行分类的计算机算法。 ML应用于各个领域,包括自然科学,工程,太空探索甚至游戏开发。本文的重点是在化学和生物海洋学领域使用机器学习。在预测全球固定氮水平,部分二氧化碳压力和其他化学特性时,ML的应用是一种有前途的工具。机器学习还用于生物海洋学领域,可从各种图像(即显微镜,流车和视频记录器),光谱仪和其他信号处理技术中检测浮游形式。此外,ML使用其声学成功地对哺乳动物进行了分类,在特定的环境中检测到濒临灭绝的哺乳动物和鱼类。最重要的是,使用环境数据,ML被证明是预测缺氧条件和有害藻华事件的有效方法,这是对环境监测的重要测量。此外,机器学习被用来为各种物种构建许多对其他研究人员有用的数据库,而创建新算法将帮助海洋研究界更好地理解海洋的化学和生物学。
translated by 谷歌翻译
自动化驾驶系统(广告)开辟了汽车行业的新领域,为未来的运输提供了更高的效率和舒适体验的新可能性。然而,在恶劣天气条件下的自主驾驶已经存在,使自动车辆(AVS)长时间保持自主车辆(AVS)或更高的自主权。本文评估了天气在分析和统计方式中为广告传感器带来的影响和挑战,并对恶劣天气条件进行了解决方案。彻底报道了关于对每种天气的感知增强的最先进技术。外部辅助解决方案如V2X技术,当前可用的数据集,模拟器和天气腔室的实验设施中的天气条件覆盖范围明显。通过指出各种主要天气问题,自主驾驶场目前正在面临,近年来审查硬件和计算机科学解决方案,这项调查概述了在不利的天气驾驶条件方面的障碍和方向的障碍和方向。
translated by 谷歌翻译
Efficient energy consumption is crucial for achieving sustainable energy goals in the era of climate change and grid modernization. Thus, it is vital to understand how energy is consumed at finer resolutions such as household in order to plan demand-response events or analyze the impacts of weather, electricity prices, electric vehicles, solar, and occupancy schedules on energy consumption. However, availability and access to detailed energy-use data, which would enable detailed studies, has been rare. In this paper, we release a unique, large-scale, synthetic, residential energy-use dataset for the residential sector across the contiguous United States covering millions of households. The data comprise of hourly energy use profiles for synthetic households, disaggregated into Thermostatically Controlled Loads (TCL) and appliance use. The underlying framework is constructed using a bottom-up approach. Diverse open-source surveys and first principles models are used for end-use modeling. Extensive validation of the synthetic dataset has been conducted through comparisons with reported energy-use data. We present a detailed, open, high-resolution, residential energy-use dataset for the United States.
translated by 谷歌翻译
道路建设项目维护运输基础设施。这些项目的范围从短期(例如,重新铺面或固定坑洼)到长期(例如,添加肩膀或建造桥梁)。传统上,确定下一个建设项目是什么以及安排什么何时进行安排,这是通过人类使用特殊设备的检查来完成的。这种方法是昂贵且难以扩展的。另一种选择是使用计算方法来整合和分析多种过去和现在的时空数据以预测未来道路构建的位置和时间。本文报告了这种方法,该方法使用基于深神经网络的模型来预测未来的结构。我们的模型在由构造,天气,地图和道路网络数据组成的异质数据集上应用卷积和经常性组件。我们还报告了如何通过构建一个名为“美国建设”的大型数据集来解决我们如何解决足够的公开数据,其中包括620万个道路构造案例,并通过各种时空属性和路线网络功能增强,收集了。在2016年至2021年之间的连续美国(美国)中。使用对美国几个主要城市进行广泛的实验,我们显示了工作在准确预测未来建筑时的适用性 - 平均F1得分为0.85,准确性为82.2% - 这是52.2% - 胜过基线。此外,我们展示了我们的培训管道如何解决数据的空间稀疏性。
translated by 谷歌翻译