当我们继续找到当前可用的嘈杂设备比其经典配音具有优势的应用程序时,高效利用量子资源是非常可取的。提出了量子自动编码器的概念,是压缩量子信息以减少资源需求的一种方式。在这里,我们提出了一种使用进化算法来设计量子自动编码器的策略,以将量子信息转换为较低维表示。我们成功地证明了该算法在压缩量子状态的不同家族中的初始应用。特别是,我们指出,使用算法中的限制门设置可以有效地模拟生成的电路。这种方法可以使用更少的计算资源来使用经典逻辑来找到量子数据的低表示。
translated by 谷歌翻译
我们提出了一种新的混合系统,用于通过使用多目标遗传算法在灰度图像上自动生成和训练量子启发的分类器。我们定义一个动态健身函数,以获得最小的电路和最高的观点数据准确性,以确保所提出的技术是可推广且健壮的。我们通过惩罚其外观来最大程度地减少生成电路的复杂性。我们使用二维降低方法减少图像的大小:主成分分析(PCA),该分析(PCA)是为了优化目的而在个体中编码的,以及一个小的卷积自动编码器(CAE)。将这两种方法相互比较,并采用经典的非线性方法来理解其行为,并确保分类能力是由于量子电路而不是用于降低维度的预处理技术引起的。
translated by 谷歌翻译
For a large number of tasks, quantum computing demonstrates the potential for exponential acceleration over classical computing. In the NISQ era, variable-component subcircuits enable applications of quantum computing. To reduce the inherent noise and qubit size limitations of quantum computers, existing research has improved the accuracy and efficiency of Variational Quantum Algorithm (VQA). In this paper, we explore the various ansatz improvement methods for VQAs at the gate level and pulse level, and classify, evaluate and summarize them.
translated by 谷歌翻译
Quantum Machine Learning(QML)提供了一种强大的灵活的范式,可用于编程近期量子计算机,具有化学,计量,材料科学,数据科学和数学的应用。这里,一个以参数化量子电路的形式训练ANSATZ,以实现感兴趣的任务。然而,最近出现了挑战表明,由于随机性或硬件噪声引起的平坦训练景观,因此难以训练深度尖锐钽。这激励了我们的工作,在那里我们提出了一种可变的结构方法来构建QML的Ansatzes。我们的方法称为VANS(可变ANSATZ),将一组规则应用于在优化期间以知识的方式在增长和(至关重要的)中删除量子门。因此,VANS非常适合通过保持ANSATZ浅扫描来缓解训练性和与噪声相关的问题。我们在变分量子Eigensolver中使用Vans进行冷凝物质和量子化学应用,并且还在量子自身化学器中进行数据压缩,显示所有情况的成功结果。
translated by 谷歌翻译
Hybrid quantum-classical systems make it possible to utilize existing quantum computers to their fullest extent. Within this framework, parameterized quantum circuits can be regarded as machine learning models with remarkable expressive power. This Review presents the components of these models and discusses their application to a variety of data-driven tasks, such as supervised learning and generative modeling. With an increasing number of experimental demonstrations carried out on actual quantum hardware and with software being actively developed, this rapidly growing field is poised to have a broad spectrum of real-world applications.
translated by 谷歌翻译
旨在在低维潜在空间中压缩量子信息的量子自动编码器位于量子信息领域的自动数据压缩的核心。在本文中,我们为给定的量子自动编码器建立了压缩率的上限,并提出了一种学习控制方法,用于训练自动编码器以达到最大压缩率。理论上使用特征分解和基质分化来证明压缩率的上限,这取决于输入状态的密度矩阵表示的特征值。提出了2 Q量和3 Q量系统的数值结果,以演示如何训练量子自动编码器以实现理论上最大的压缩,并比较使用不同的机器学习算法的训练性能。说明了使用量子光学系统的量子自动编码器的实验结果,以将两个2 Q Q Q Q Qubit的状态压缩为两个1 Quit状态。
translated by 谷歌翻译
In recent times, Variational Quantum Circuits (VQC) have been widely adopted to different tasks in machine learning such as Combinatorial Optimization and Supervised Learning. With the growing interest, it is pertinent to study the boundaries of the classical simulation of VQCs to effectively benchmark the algorithms. Classically simulating VQCs can also provide the quantum algorithms with a better initialization reducing the amount of quantum resources needed to train the algorithm. This manuscript proposes an algorithm that compresses the quantum state within a circuit using a tensor ring representation which allows for the implementation of VQC based algorithms on a classical simulator at a fraction of the usual storage and computational complexity. Using the tensor ring approximation of the input quantum state, we propose a method that applies the parametrized unitary operations while retaining the low-rank structure of the tensor ring corresponding to the transformed quantum state, providing an exponential improvement of storage and computational time in the number of qubits and layers. This approximation is used to implement the tensor ring VQC for the task of supervised learning on Iris and MNIST datasets to demonstrate the comparable performance as that of the implementations from classical simulator using Matrix Product States.
translated by 谷歌翻译
量子计算的最新进展已显示出许多问题领域的有希望的计算优势。作为越来越关注的领域之一,混合量子古典机器学习系统已经证明了解决各种数据驱动的学习任务的能力。最近的作品表明,参数化的量子电路(PQC)可用于以可证明的学习优势来解决具有挑战性的强化学习(RL)任务。尽管现有的作品产生了基于PQC的方法的潜力,但PQC体系结构的设计选择及其对学习任务的影响通常没有得到充实。在这项工作中,我们介绍了基于PQC的模型EQAS-PQC,这是一种进化的量子体系结构搜索框架,该模型使用基于人群的遗传算法来通过探索量子操作的搜索空间来发展PQC体系结构。实验结果表明,我们的方法可以显着改善混合量子古典模型在解决基准增强问题方面的性能。我们还对量子操作的概率分布进行建模,以表现出色的体系结构,以识别对性能至关重要的基本设计选择。
translated by 谷歌翻译
我们展示了一个新的开源软件,用于快速评估量子电路和绝热进化,这充分利用了硬件加速器。越来越多的Quantum Computing兴趣和Quantum硬件设备的最新发展的兴趣激励了新的高级计算工具的开发,其专注于性能和使用简单性。在这项工作中,我们介绍了一种新的Quantum仿真框架,使开发人员能够将硬件或平台实现的所有复杂方面委托给库,以便他们专注于手头的问题和量子算法。该软件采用Scratch设计,使用仿真性能,代码简单和用户友好的界面作为目标目标。它利用了硬件加速,例如多线CPU,单个GPU和多GPU设备。
translated by 谷歌翻译
量子计算是使用量子力学执行计算的过程。该领域研究某些亚杀菌粒子的量子行为,以便随后在执行计算,以及大规模信息处理中使用。这些能力可以在计算时间和经典计算机上的成本方面提供量子计算机的优势。如今,由于计算复杂性或计算所需的时间,具有科学挑战,这是由于古典计算而无法执行,并且量子计算是可能的答案之一。然而,电流量子器件尚未实现必要的QUBITS,并且没有足够的容错才能实现这些目标。尽管如此,还有其他领域,如机器学习或化学,其中量子计算对电流量子器件有用。本手稿旨在展示2017年和2021年之间发布的论文的系统文献综述,以确定,分析和分类量子机器学习和其应用中使用的不同算法。因此,该研究确定了使用量子机器学习技术和算法的52篇文章。发现算法的主要类型是经典机器学习算法的量子实现,例如支持向量机或K最近邻模型,以及古典的深度学习算法,如量子神经网络。许多文章试图解决目前通过古典机器学习回答的问题,但使用量子设备和算法。即使结果很有希望,量子机器学习也远未实现其全部潜力。由于现有量子计算机缺乏足够的质量,速度和比例以允许量子计算来实现其全部潜力,因此需要提高量子硬件。
translated by 谷歌翻译
近年来,机器学习的巨大进步已经开始对许多科学和技术的许多领域产生重大影响。在本文的文章中,我们探讨了量子技术如何从这项革命中受益。我们在说明性示例中展示了过去几年的科学家如何开始使用机器学习和更广泛的人工智能方法来分析量子测量,估计量子设备的参数,发现新的量子实验设置,协议和反馈策略,以及反馈策略,以及通常改善量子计算,量子通信和量子模拟的各个方面。我们重点介绍了公开挑战和未来的可能性,并在未来十年的一些投机愿景下得出结论。
translated by 谷歌翻译
量子噪声是嘈杂中间级量子(NISQ)计算机中的关键挑战。以前的缓解噪声的工作主要集中在门级或脉冲级噪声自适应编译。然而,有限的研究工作通过使量子电路本身对噪声具有更高的优化级别。我们提出了Quoutumnas,是变分电路和量子位映射的噪声自适应共同搜索的全面框架。变形量子电路是构建QML和量子仿真的有希望的方法。然而,由于大型设计空间和参数训练成本,找到最佳变分电路及其最佳参数是具有挑战性的。我们建议通过引入新的超级速度来解耦电路搜索和参数培训。超电路由多层预定的参数化栅极构成,并通过迭代采样和更新其的参数子集(Subcircuit)训练。它提供了从头开始培训的子通差形性能的准确估计。然后我们执行Subcircuit的演进共同搜索和其量子位映射。使用从超级电路继承的参数和使用真实设备噪声模型进行估计,估计子电路性能。最后,我们执行迭代栅极修剪和FineTuning以去除冗余栅极。在10个量子计算上广泛评估了12个QML和VQE基准,Quoutumnas显着优于基线。对于QML,Quoutumnas是第一个展示超过95%的2级,85%的4级和真实QC的32%的10级分类准确性。与UCCSD相比,它还实现了H2,H2O,LIH,CH4,BEH2上的VQE任务的最低特征值。我们还开源Quantumengine(https://github.com/mit-han-lab/pytorch-quantum),用于快速训练参数化量子电路,以促进未来的研究。
translated by 谷歌翻译
在这项工作中,我们利用量子深的增强学习作为方法,以在三个模拟的复杂性的模拟环境中为简单的,轮式机器人学习导航任务。我们显示了与经典基线相比,在混合量子古典设置中训练有良好建立的深钢筋学习技术的参数化量子电路的相似性能。据我们所知,这是用于机器人行为的量子机学习(QML)的首次演示。因此,我们将机器人技术建立为QML算法的可行研究领域,此后量子计算和量子机学习是自治机器人技术未来进步的潜在技术。除此之外,我们讨论了当前的方法的限制以及自动机器人量子机学习领域的未来研究方向。
translated by 谷歌翻译
量子计算硬件的功能增加,并实现深量子电路的挑战需要完全自动化和有效的工具来编译量子电路。要以一系列与特定量子计算机体系结构有关的天然大门表达任意电路,对于使算法在量子硬件提供商的整个景观中可移植。在这项工作中,我们提出了一个能够转换和优化量子电路的编译器,针对基于穿梭的捕获离子量子处理器。它由剑桥量子计算机的量子电路框架pytket上的自定义算法组成。评估了广泛的量子电路的性能,与标准Pytket相比,与标准Qiskit汇编相比,栅极计数可以降低到3.6倍,最高为2.2,而我们获得的栅极计数与相似的栅极计数相比相比,针对AQT线性静态捕获离子地址架构的Pytket扩展。
translated by 谷歌翻译
对状态$ \ lvert \ psi \ rangle $的对称性是单一操作员,其中$ \ lvert \ psi \ rangle $是特征者。当$ \ lvert \ psi \ rangle $是黑盒甲骨文提供的未知状态时,该州的对称性可用于表征它,并且通常会降级有关$ \ lvert \ psi \ rangle $的许多所需信息。在本文中,我们开发了一种变性杂种量子式学习方案,以系统地探测$ \ lvert \ psi \ rangle $的对称性,而没有对状态的先验假设。此过程可用于同时学习各种对称性。为了避免重新学习已经知道的对称性,我们引入了一种具有经典深神经网的交互式协议。因此,经典的网络针对重复的发现进行了正规化,并允许我们的算法通过发现的所有可能对称性终止经验。我们的方案可以平均通过非本地交换门有效地实施;我们还提供了仅使用本地操作的效率较低的算法,这可能更适合当前的噪声量子设备。我们展示了我们对代表国家的算法。
translated by 谷歌翻译
FIG. 1. Schematic diagram of a Variational Quantum Algorithm (VQA). The inputs to a VQA are: a cost function C(θ), with θ a set of parameters that encodes the solution to the problem, an ansatz whose parameters are trained to minimize the cost, and (possibly) a set of training data {ρ k } used during the optimization. Here, the cost can often be expressed in the form in Eq. ( 3), for some set of functions {f k }. Also, the ansatz is shown as a parameterized quantum circuit (on the left), which is analogous to a neural network (also shown schematically on the right). At each iteration of the loop one uses a quantum computer to efficiently estimate the cost (or its gradients). This information is fed into a classical computer that leverages the power of optimizers to navigate the cost landscape C(θ) and solve the optimization problem in Eq. ( 1). Once a termination condition is met, the VQA outputs an estimate of the solution to the problem. The form of the output depends on the precise task at hand. The red box indicates some of the most common types of outputs.
translated by 谷歌翻译
One of the challenges currently facing the quantum computing community is the design of quantum circuits which can efficiently run on near-term quantum computers, known as the quantum compiling problem. Algorithms such as the Variational Quantum Eigensolver (VQE), Quantum Approximate Optimization Algorithm (QAOA), and Quantum Architecture Search (QAS) have been shown to generate or find optimal near-term quantum circuits. However, these methods are computationally expensive and yield little insight into the circuit design process. In this paper, we propose Quantum Deep Dreaming (QDD), an algorithm that generates optimal quantum circuit architectures for specified objectives, such as ground state preparation, while providing insight into the circuit design process. In QDD, we first train a neural network to predict some property of a quantum circuit (such as VQE energy). Then, we employ the Deep Dreaming technique on the trained network to iteratively update an initial circuit to achieve a target property value (such as ground state VQE energy). Importantly, this iterative updating allows us to analyze the intermediate circuits of the dreaming process and gain insights into the circuit features that the network is modifying during dreaming. We demonstrate that QDD successfully generates, or 'dreams', circuits of six qubits close to ground state energy (Transverse Field Ising Model VQE energy) and that dreaming analysis yields circuit design insights. QDD is designed to optimize circuits with any target property and can be applied to circuit design problems both within and outside of quantum chemistry. Hence, QDD lays the foundation for the future discovery of optimized quantum circuits and for increased interpretability of automated quantum algorithm design.
translated by 谷歌翻译
量子计算有可能彻底改变和改变我们的生活和理解世界的方式。该审查旨在提供对量子计算的可访问介绍,重点是统计和数据分析中的应用。我们从介绍了了解量子计算所需的基本概念以及量子和经典计算之间的差异。我们描述了用作量子算法的构建块的核心量子子程序。然后,我们审查了一系列预期的量子算法,以便在统计和机器学习中提供计算优势。我们突出了将量子计算应用于统计问题的挑战和机遇,并讨论潜在的未来研究方向。
translated by 谷歌翻译
预测量子电路的输出是一项硬计算任务,在通用量子计算机的开发中起着关键作用。在这里,我们研究了随机量子电路的输出期望值的监督学习。深层卷积神经网络(CNN)经过训练,可以使用经典模拟电路的数据库来预测单量和两数分的期望值。这些电路通过适当设计的组成门编码来表示。分析了以前看不见的电路的预测准确性,还可以与免费的IBM量子程序获得的小规模量子计算机进行比较。 CNN通常取决于电路深度,网络深度和训练集尺寸,通常优于量子设备。值得注意的是,我们的CNN被设计为可扩展。这使我们可以利用转移学习和执行外推,以比培训集中包含的电路更大。这些CNN还表现出对噪声的显着弹性,即,即使在很少的测量值中进行了(模拟)期望值的训练,它们仍然是准确的。
translated by 谷歌翻译
模型压缩(例如修剪和量化)已广泛应用于在资源有限的经典设备上优化神经网络。最近,对变分量子电路(VQC)的兴趣越来越大,即量子计算机上的一种神经网络(又称量子神经网络)。众所周知,近期的量子设备具有高噪声和有限的资源(即量子位,Qubits);但是,如何压缩量子神经网络尚未得到彻底研究。人们可能会认为将经典压缩技术应用于量子场景是很简单的。但是,本文表明,量子和经典神经网络的压缩之间存在差异。根据我们的观察,我们声称必须参与压缩过程。最重要的是,我们提出了第一个系统的框架,即CompVQC,以压缩量子神经网络(QNNS)。在CompVQC中,关键组件是一种新型的压缩算法,该算法基于乘数的交替方向方法(ADMM)。方法。实验证明了COMPVQC的优势,以微不足道的精度下降(<1%)降低了电路深度(几乎超过2.5%),这表现优于其他竞争对手。另一个有前途的事实是,我们的COMPVQC确实可以促进QNN在近期噪声量子设备上的鲁棒性。
translated by 谷歌翻译