我们展示了如何构建深度神经网络(DNN)专家,以预测给定计算问题的准最佳$ HP $ - 翻新。主要想法是在执行自适应$ HP $ -FINITE元素方法($ HP $ -FEM)算法的过程中培训DNN专家,并以后使用它来预测进一步的$ HP $细化。在培训中,我们使用两个网格范式自适应$ HP $ -FEM算法。它采用精细网格为粗网格元素提供最佳$ HP $改进。我们旨在构建DNN专家,以识别粗网格元素的准最佳$ HP $改进。在训练阶段,我们使用直接求解器获取细网元的溶液,以指导粗网格元件上的最佳修补。训练后,我们关闭了自适应$ hp $ -FEM算法,并继续按照受过DNN专家培训的DNN专家提出的准优化细化。我们测试了三维FICHERA和二维L形域问题的方法。我们验证数值相对于网格尺寸的收敛性。我们表明,如果我们继续使用经过适当培训的DNN专家进行改进,则可以保留由自适应$ hp $ -FEM提供的指数融合。因此,在本文中,我们表明,从自适应$ hp $ -fem中,可以训练DNN专家的奇异性位置,并继续选择准最佳的$ hp $ previness该方法的指数收敛性。
translated by 谷歌翻译
在这项工作中,我们分析了不同程度的不同精度和分段多项式测试函数如何影响变异物理学知情神经网络(VPINN)的收敛速率,同时解决椭圆边界边界值问题,如何影响变异物理学知情神经网络(VPINN)的收敛速率。使用依靠INF-SUP条件的Petrov-Galerkin框架,我们在精确解决方案和合适的计算神经网络的合适的高阶分段插值之间得出了一个先验误差估计。数值实验证实了理论预测并突出了INF-SUP条件的重要性。我们的结果表明,以某种方式违反直觉,对于平滑解决方案,实现高衰减率的最佳策略在选择最低多项式程度的测试功能方面,同时使用适当高精度的正交公式。
translated by 谷歌翻译
深度学习表明了视觉识别和某些人工智能任务的成功应用。深度学习也被认为是一种强大的工具,具有近似功能的高度灵活性。在本工作中,设计具有所需属性的功能,以近似PDE的解决方案。我们的方法基于后验误差估计,其中解决了错误定位以在神经网络框架内制定误差估计器的伴随问题。开发了一种高效且易于实现的算法,以通过采用双重加权剩余方法来获得多个目标功能的后验误差估计,然后使用神经网络计算原始和伴随解决方案。本研究表明,即使具有相对较少的训练数据,这种基于数据驱动的模型的学习具有卓越的感兴趣量的近似。用数值测试实施例证实了新颖的算法发展。证明了在浅神经网络上使用深神经网络的优点,并且还呈现了收敛增强技术
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
给定部分微分方程(PDE),面向目标的误差估计使我们能够了解诊断数量的兴趣数量(QOI)或目标的错误如何发生并积累在数值近似中,例如使用有限元方法。通过将误差估计分解为来自各个元素的贡献,可以制定适应方法,该方法可以修改网格,以最大程度地减少所得QOI误差的目的。但是,标准误差估计公式涉及真实的伴随解决方案,这在实践中是未知的。因此,通常的做法是用“富集”的近似值(例如,在更高的空间或精制的网格上)近似。这样做通常会导致计算成本的显着增加,这可能是损害(面向目标)自适应模拟的竞争力的瓶颈。本文的核心思想是通过选择性更换昂贵的误差估计步骤,并使用适当的配置和训练的神经网络开发“数据驱动”目标的网格适应方法。这样,甚至可以在不构造富集空间的情况下获得误差估计器。此处采用了逐元构造,该元素构造与网格几何相关的各种参数的局部值和基础问题物理物理作为输入,并且对误差估计器的相应贡献作为输出。我们证明,这种方法能够以降低的计算成本获得相同的准确性,对于与潮汐涡轮机周围流动相关的自适应网格测试用例,这些测试用例是通过其下游唤醒相互作用的,以及农场的整体功率输出作为将其视为QOI。此外,我们证明了元素元素方法意味着培训成本相当低。
translated by 谷歌翻译
本文涉及以下重要的研究问题。传统上,神经网络采用与线性操作员连接的非线性激活功能,以近似给定的物理现象。它们与激活功能的级联“填充空间”,并调整它们的系数以近似物理现象。我们声称,更好地“填充空间”,具有由异常分析所用的平滑高阶B样条基础功能的线性组合,并利用神经网络来调整线性组合的系数。换句话说,评估使用神经网络用于近似B样条曲线基本功能的系数的可能性以及直接逼近解决方案。 Maziar Raissi等人提出了用神经网络解决微分方程。 2017年通过引入物理信息的神经网络(PINN),自然地将底层物理法编码为先前信息。使用函数的系数近似值用作输入利用神经网络的众所周知的能力是通用函数近似器。实质上,在Pinn方法中,网络近似于给定点的给定场的值。我们呈现一种替代方法,其中水平量被近似为平滑B样条基函数的线性组合,并且神经网络近似于B样条的系数。该研究将DNN的结果与近似B样条函数的线性组合系数进行比较,DNN直接逼近溶液。我们表明,当近似平滑的物理领域时,我们的方法更便宜,更准确。
translated by 谷歌翻译
This paper proposes Friedrichs learning as a novel deep learning methodology that can learn the weak solutions of PDEs via a minmax formulation, which transforms the PDE problem into a minimax optimization problem to identify weak solutions. The name "Friedrichs learning" is for highlighting the close relationship between our learning strategy and Friedrichs theory on symmetric systems of PDEs. The weak solution and the test function in the weak formulation are parameterized as deep neural networks in a mesh-free manner, which are alternately updated to approach the optimal solution networks approximating the weak solution and the optimal test function, respectively. Extensive numerical results indicate that our mesh-free method can provide reasonably good solutions to a wide range of PDEs defined on regular and irregular domains in various dimensions, where classical numerical methods such as finite difference methods and finite element methods may be tedious or difficult to be applied.
translated by 谷歌翻译
在过去的十年中,在许多工程领域,包括自动驾驶汽车,医疗诊断和搜索引擎,甚至在艺术创作中,神经网络(NNS)已被证明是极有效的工具。确实,NN通常果断地超过传统算法。直到最近才引起重大兴趣的一个领域是使用NNS设计数值求解器,尤其是用于离散的偏微分方程。最近的几篇论文考虑使用NNS来开发多机方法,这些方法是解决离散的偏微分方程和其他稀疏矩阵问题的领先计算工具。我们扩展了这些新想法,重点关注所谓的放松操作员(也称为Smoothers),这是Multigrid算法的重要组成部分,在这种情况下尚未受到很多关注。我们探索了一种使用NNS学习带有随机系数的扩散算子的放松参数的方法,用于雅各比类型的Smoothers和4Color Gaussseidel Smoothers。后者的产量异常高效且易于使连续的放松(SOR)SmoOthors平行。此外,这项工作表明,使用两个网格方法在相对较小的网格上学习放松参数,而Gelfand的公式可以轻松实现。这些方法有效地产生了几乎最佳的参数,从而显着提高了大网格上的Multigrid算法的收敛速率。
translated by 谷歌翻译
在这项工作中,我们重新审视标准自适应有限元方法(AFEM)中做出的标记决定。经验表明,na \“ {i} ve标记策略会导致对自适应网格改进的计算资源的效率低下。因此,实践中使用AFEM通常涉及临时或耗时的离线参数调整来设置适当的参数对于标记子例程。为了解决这些实际问题,我们将AMR作为马尔可夫决策过程,在该过程中可以在运行时选择完善参数,而无需专家用户进行预先调整。在此新范式中,还可以通过标记策略自适应地选择细化参数,该标记策略可以使用强化学习中的方法进行优化。我们使用泊松方程来证明我们在$ h $ - 和$ hp $ - $ $ - 重新计算基准问题上的技术,我们的实验表明,这表明我们的实验表明对于许多古典AFEM应用程序,尚未发现卓越的标记策略。此外,这项工作的意外观察是,对一个PDE家族进行培训的标记政策是有时的MES足够强大,可以在训练家庭之外的问题上表现出色。为了进行插图,我们表明,在只有一个重新入口的2D域中训练的简单$ HP $投资政策可以在更复杂的2D域甚至3D域中部署,而没有大幅度的性能损失。为了复制和更广泛的采用,我们伴随着这项工作,并采用了我们方法的开源实施。
translated by 谷歌翻译
计算物理问题问题的有限元离散通常依赖于自适应网格细化(AMR)来优先解决模拟过程中包含重要特征的区域。但是,这些空间改进策略通常是启发式的,并且依靠特定领域的知识或反复试验。我们将自适应网状精炼的过程视为不完整的信息下的本地,顺序决策问题,将AMR作为部分可观察到的马尔可夫决策过程。使用深厚的增强学习方法,我们直接从数值模拟中训练政策网络为AMR策略训练。培训过程不需要精确的解决方案或手头部分微分方程的高保真地面真相,也不需要预先计算的培训数据集。我们强化学习公式的本地性质使政策网络可以廉价地培训比部署的问题要小得多。该方法不是特定于任何特定的部分微分方程,问题维度或数值离散化的特定,并且可以灵活地结合各种问题物理。为此,我们使用各种高阶不连续的Galerkin和杂交不连续的Galerkin有限元离散化,将方法应用于各种偏微分方程。我们表明,由此产生的深入强化学习政策与共同的AMR启发式方法具有竞争力,跨越问题类别概括,并在准确性和成本之间取得了有利的平衡,因此它们通常会导致每个问题自由度的准确性更高。
translated by 谷歌翻译
在科学计算中,在科学计算中的许多应用中出现了从样本点近似平滑,多元功能的问题,在科学和工程的计算不确定性量化(UQ)中。在这些应用中,目标函数可以代表参数化部分微分方程(PDE)的所需量。由于解决此类问题的成本很高,在解决每个样本中通过求解PDE计算,样本效率是有关这些应用的关键。最近,越来越多地关注深度神经网络(DNN)和深度学习(DL)从数据中学习此类功能。在这项工作中,我们提出了一种自适应抽样策略,CAS4DL(基督佛尔自适应采样用于深度学习),以提高DL的样本效率用于多元功能近似。我们的新方法基于将DNN的第二至最后一层解释为该层上节点定义的函数词典。从这个角度来看,我们定义了一种自适应采样策略,该策略是由最近提出的线性近似方案提出的自适应采样方案激励的,其中该词典跨越的子空间的基督教词函数随机绘制了样品。我们提出了比较CAS4DL与标准蒙特卡洛(MC)采样的数值实验。我们的结果表明,CAS4DL通常可以在达到给定准确性所需的样品数量中节省大量,尤其是在平滑激活功能的情况下,与MC相比,它显示出更好的稳定性。因此,这些结果是将DL完全适应科学计算应用的有希望的一步。
translated by 谷歌翻译
Deep learning has achieved remarkable success in diverse applications; however, its use in solving partial differential equations (PDEs) has emerged only recently. Here, we present an overview of physics-informed neural networks (PINNs), which embed a PDE into the loss of the neural network using automatic differentiation. The PINN algorithm is simple, and it can be applied to different types of PDEs, including integro-differential equations, fractional PDEs, and stochastic PDEs. Moreover, from the implementation point of view, PINNs solve inverse problems as easily as forward problems. We propose a new residual-based adaptive refinement (RAR) method to improve the training efficiency of PINNs. For pedagogical reasons, we compare the PINN algorithm to a standard finite element method. We also present a Python library for PINNs, DeepXDE, which is designed to serve both as an education tool to be used in the classroom as well as a research tool for solving problems in computational science and engineering. Specifically, DeepXDE can solve forward problems given initial and boundary conditions, as well as inverse problems given some extra measurements. DeepXDE supports complex-geometry domains based on the technique of constructive solid geometry, and enables the user code to be compact, resembling closely the mathematical formulation. We introduce the usage of DeepXDE and its customizability, and we also demonstrate the capability of PINNs and the user-friendliness of DeepXDE for five different examples. More broadly, DeepXDE contributes to the more rapid development of the emerging Scientific Machine Learning field.
translated by 谷歌翻译
在本文中,我们介绍了一种基于距离场的新方法,以确保物理知识的深神经网络中的边界条件。众所周知,满足网状紫外线和颗粒方法中的Dirichlet边界条件的挑战是众所周知的。该问题在物理信息的开发中也是相关的,用于解决部分微分方程的解。我们在人工神经网络中介绍几何意识的试验功能,以改善偏微分方程的深度学习培训。为此,我们使用来自建设性的实体几何(R函数)和广义的等级坐标(平均值潜在字段)的概念来构建$ \ phi $,对域边界的近似距离函数。要恰好施加均匀的Dirichlet边界条件,试验函数乘以\ PHI $乘以PINN近似,并且通过Transfinite插值的泛化用于先验满足的不均匀Dirichlet(必要),Neumann(自然)和Robin边界复杂几何形状的条件。在这样做时,我们消除了与搭配方法中的边界条件满意相关的建模误差,并确保以ritz方法点点到运动可视性。我们在具有仿射和弯曲边界的域上的线性和非线性边值问题的数值解。 1D中的基准问题,用于线性弹性,平面扩散和光束弯曲;考虑了泊松方程的2D,考虑了双音态方程和非线性欧克隆方程。该方法延伸到更高的尺寸,并通过在4D超立方套上解决彼此与均匀的Dirichlet边界条件求泊松问题来展示其使用。该研究提供了用于网眼分析的途径,以在没有域离散化的情况下在确切的几何图形上进行。
translated by 谷歌翻译
我们介绍了具有不连续解决方案的线性前进反应问题的最小二乘释放的方法,并表明该方法在自由度的数量方面优于基于网格的数值方法。本文研究了标量非线性双曲胁迫法的LSNN方法。该方法是在具有Relu激活功能的神经网络功能集中的等效最小二乘(LS)配方的离散化。通过使用数值集成和保守的有限体积方案来完成对LS功能的评估。一些测试问题的数值结果表明,该方法能够通过Relu神经网络的释放线自由断路来近似底层问题的不连续接口。此外,该方法不沿着不连续界面展示普通的GIBB现象。
translated by 谷歌翻译
我们提出了一种深度学习策略,以估计级别方法中二维隐式接口的平均曲率。我们的方法是基于拟合馈送的神经网络与由沉浸在各种分辨率均匀网格中的圆形界面构建的合成数据集。这些多层感知器处理自由边界旁边的网格点的级别值,并在接口上最接近的位置输出无量纲曲率。在统一和自适应网格中,涉及不规则界面的精确分析表明,我们的模型与$ l^1 $和$ l^2 $规范中的传统数值方案具有竞争力。特别是,当界面具有陡峭的曲率区域以及重新初始化水平集函数的迭代次数时,我们的神经网络在粗分辨率中以可比精度近似于曲率。尽管传统的数值方法比我们的框架更强大,但我们的结果揭示了机器学习的潜力,以处理已知级别方法遇到困难的计算任务。我们还确定,与通用神经网络相比,可以设计出依赖于应用程序的局部分辨率的局部分辨率图来更有效地估计平均曲率。
translated by 谷歌翻译
Petrov-Galerkin formulations with optimal test functions allow for the stabilization of finite element simulations. In particular, given a discrete trial space, the optimal test space induces a numerical scheme delivering the best approximation in terms of a problem-dependent energy norm. This ideal approach has two shortcomings: first, we need to explicitly know the set of optimal test functions; and second, the optimal test functions may have large supports inducing expensive dense linear systems. Nevertheless, parametric families of PDEs are an example where it is worth investing some (offline) computational effort to obtain stabilized linear systems that can be solved efficiently, for a given set of parameters, in an online stage. Therefore, as a remedy for the first shortcoming, we explicitly compute (offline) a function mapping any PDE-parameter, to the matrix of coefficients of optimal test functions (in a basis expansion) associated with that PDE-parameter. Next, as a remedy for the second shortcoming, we use the low-rank approximation to hierarchically compress the (non-square) matrix of coefficients of optimal test functions. In order to accelerate this process, we train a neural network to learn a critical bottleneck of the compression algorithm (for a given set of PDE-parameters). When solving online the resulting (compressed) Petrov-Galerkin formulation, we employ a GMRES iterative solver with inexpensive matrix-vector multiplications thanks to the low-rank features of the compressed matrix. We perform experiments showing that the full online procedure as fast as the original (unstable) Galerkin approach. In other words, we get the stabilization with hierarchical matrices and neural networks practically for free. We illustrate our findings by means of 2D Eriksson-Johnson and Hemholtz model problems.
translated by 谷歌翻译
标准的神经网络可以近似一般的非线性操作员,要么通过数学运算符的组合(例如,在对流 - 扩散反应部分微分方程中)的组合,要么仅仅是黑匣子,例如黑匣子,例如一个系统系统。第一个神经操作员是基于严格的近似理论于2019年提出的深层操作员网络(DeepOnet)。从那时起,已经发布了其他一些较少的一般操作员,例如,基于图神经网络或傅立叶变换。对于黑匣子系统,对神经操作员的培训仅是数据驱动的,但是如果知道管理方程式可以在培训期间将其纳入损失功能,以开发物理知识的神经操作员。神经操作员可以用作设计问题,不确定性量化,自主系统以及几乎任何需要实时推断的应用程序中的代替代物。此外,通过将它们与相对轻的训练耦合,可以将独立的预训练deponets用作复杂多物理系统的组成部分。在这里,我们介绍了Deponet,傅立叶神经操作员和图神经操作员的评论,以及适当的扩展功能扩展,并突出显示它们在计算机械师中的各种应用中的实用性,包括多孔媒体,流体力学和固体机制, 。
translated by 谷歌翻译
我们提出了一个机器学习框架,该框架将图像超分辨率技术与级别测量方法中的被动标量传输融为一体。在这里,我们研究是否可以计算直接数据驱动的校正,以最大程度地减少界面的粗晶石演化中的数值粘度。拟议的系统的起点是半拉格朗日配方。并且,为了减少数值耗散,我们引入了一个易于识别的多层感知器。该神经网络的作用是改善数值估计的表面轨迹。为此,它在单个时间范围内处理局部级别集,速度和位置数据,以便在移动前部附近的选择顶点。因此,我们的主要贡献是一种新型的机器学习调音算法,该算法与选择性重新融为一体并与常规对流交替运行,以保持调整后的界面轨迹平滑。因此,我们的程序比基于全卷卷积的应用更有效,因为它仅在自由边界周围集中计算工作。同样,我们通过各种测试表明,我们的策略有效地抵消了数值扩散和质量损失。例如,在简单的对流问题中,我们的方法可以达到与基线方案相同的精度,分辨率是分辨率的两倍,但成本的一小部分。同样,我们的杂种技术可以产生可行的固化前端,以进行结晶过程。另一方面,切向剪切流和高度变形的模拟会导致偏置伪像和推理恶化。同样,严格的设计速度约束可以将我们的求解器的应用限制为涉及快速接口更改的问题。在后一种情况下,我们已经确定了几个机会来增强鲁棒性,而没有放弃我们的方法的基本概念。
translated by 谷歌翻译
Helmholtz方程已被用于在谐波负载下建模声压场。通过求解Helmholtz方程计算谐波声压场,如果想要研究许多不同的几何形状,可以迅速变得不可行,以便频率范围。我们提出了一种机器学习方法,即前馈密集神经网络,用于在频率范围内计算平均声压。通过数值计算平均声压的响应,通过对压力的特征模分分解来产生数据。我们分析近似的准确性,并确定需要多少训练数据,以便在平均压力响应的预测中达到一定的准确性。
translated by 谷歌翻译
我们提出了一种基于错误的神经模型模型,用于在级别集方法中近似二维曲率。我们的主要贡献是重新设计的混合求解器[Larios-C \'Ardenas和Gibou,J。Comput。物理。 (2022年5月),10.1016/j.jcp.2022.111291]依靠数值方案来按需启用机器学习操作。特别是,我们的常规特征是双重预测对线束曲率对称不变性,以支持精度和稳定性。该求解器的核心是在圆形和正弦式接口样品上训练的多层感知器。它的作用是量化数值曲率近似值中的误差,并沿自由边界发射校正的校正估计值。这些校正是针对预处理上下文级别,曲率和梯度数据而产生的。为了促进神经能力,我们采用了样品阴性屈肌的归一化,重新定位和基于反射的增强。以相同的方式,我们的系统结合了降低,平衡性良好和正则化,以最大程度地减少外围影响。我们的训练方法同样可以跨网格尺寸扩展。为此,我们在数据生产过程中引入了无量纲的参数化和概率子采样。总之,所有这些元素都提高了分辨不足区域周围曲率计算的准确性和效率。在大多数实验中,我们的策略的表现优于数值基线,是重新涉及步骤数的两倍,同时仅需要一小部分成本。
translated by 谷歌翻译