The geospace environment is volatile and highly driven. Space weather has effects on Earth's magnetosphere that cause a dynamic and enigmatic response in the thermosphere, particularly on the evolution of neutral mass density. Many models exist that use space weather drivers to produce a density response, but these models are typically computationally expensive or inaccurate for certain space weather conditions. In response, this work aims to employ a probabilistic machine learning (ML) method to create an efficient surrogate for the Thermosphere Ionosphere Electrodynamics General Circulation Model (TIE-GCM), a physics-based thermosphere model. Our method leverages principal component analysis to reduce the dimensionality of TIE-GCM and recurrent neural networks to model the dynamic behavior of the thermosphere much quicker than the numerical model. The newly developed reduced order probabilistic emulator (ROPE) uses Long-Short Term Memory neural networks to perform time-series forecasting in the reduced state and provide distributions for future density. We show that across the available data, TIE-GCM ROPE has similar error to previous linear approaches while improving storm-time modeling. We also conduct a satellite propagation study for the significant November 2003 storm which shows that TIE-GCM ROPE can capture the position resulting from TIE-GCM density with < 5 km bias. Simultaneously, linear approaches provide point estimates that can result in biases of 7 - 18 km.
translated by 谷歌翻译
机器学习(ML)近年来往往应用于太空天气(SW)问题。 SW起源于太阳能扰动,包括由此产生的复杂变化,它们导致太阳和地球之间的系统。这些系统紧密耦合并不太了解。这为熟练的模型创造了具有关于他们预测的信心的知识。这种动态系统的一个例子是热层,地球上层大气的中性区域。我们无法预测其在低地球轨道中对象的卫星拖拽和碰撞操作的背景下具有严重的影响。即使使用(假设)完美的驾驶员预测,我们对系统的不完全知识也会导致往往是不准确的中性质量密度预测。正在进行持续努力来提高模型准确性,但密度模型很少提供不确定性的估计。在这项工作中,我们提出了两种技术来开发非线性ML模型以预测热散,同时提供校准的不确定性估计:蒙特卡罗(MC)丢失和直接预测概率分布,既使用预测密度(NLPD)损耗函数的负对数。我们展示了在本地和全局数据集上培训的模型的性能。这表明NLPD为这两种技术提供了类似的结果,但是直接概率方法具有更低的计算成本。对于在集合HASDM密度数据库上回归的全局模型,我们在具有良好校准的不确定性估计的独立测试数据上实现11%的错误。使用原位校准密度数据集,这两种技术都提供了13%的测试误差。 CHAMP模型(独立数据)占测试所有预测间隔的完美校准的2%。该模型也可用于获得具有给定时期的不确定性的全局预测。
translated by 谷歌翻译
自1970年代初以来,已经开发并改进了质谱仪和不连贯的散射雷达(MSIS)模型家族。 MSI的最新版本是海军研究实验室(NRL)MSIS 2.0经验大气模型。 NRLMSIS 2.0提供物种密度,质量密度和温度估计作为位置和空间天气条件的功能。长期以来,MSIS模型一直是研究和运营社区中的大气模型的流行选择,但与许多模型一样,并未提供不确定性估计。在这项工作中,我们开发了基于机器学习(ML)的外层温度模型,该模型可与NRLMSIS 2.0一起使用,以相对于高保真卫星密度估计值校准其。我们的模型(称为MSIS-UQ)没有提供点估计,而是输出一个分布,该分布将使用称为校准误差评分的度量进行评估。我们表明,MSIS-UQ的DEMIAS nRLMSIS 2.0导致模型和卫星密度之间的差异减少25%,并且比太空力量的高精度卫星阻力模型更接近卫星密度。我们还通过生成物种密度,质量密度和温度的高度曲线来显示模型的不确定性估计功能。这明确证明了外层温度概率如何影响NRLMSIS 2.0内的密度和温度曲线。另一项研究显示,相对于单独的NRLMSIS 2.0,迅速过冷的能力提高了,从而增强了它可以捕获的现象。
translated by 谷歌翻译
机器学习(ML)通常被视为一种黑盒回归技术,无法提供相当大的科学见解。 ML模型是通用函数近似器,如果正确使用,则可以提供与用于拟合的地面数据集有关的科学信息。 ML比参数模型的好处是,没有预定义的基础函数限制可以建模的现象。在这项工作中,我们在三个数据集上开发了ML模型:太空环境技术(SET)高精度卫星阻力模型(HASDM)密度数据库,这是Jacchia-Bowman 2008经验热层密度模型(JB2008),Jacchia-Bowman 2008经验的空间端段匹配数据集,以及具有挑战性的Minisatellite有效载荷(Champ)的加速度计衍生的密度数据集。将这些ML模型与海军研究实验室质谱仪和不相互分的散射雷达(NRLMSIS 2.0)模型进行比较,以研究中热层中传感后冷却的存在。我们发现NRLMSIS 2.0和JB2008-ML都不能说明后冷却,因此在强烈的地磁风暴(例如2003年万圣节风暴)之后的时期内表现不佳。相反,HASDM-ML和Champ-ML确实显示了传感后冷却的证据,表明这种现象存在于原始数据集中。结果表明,根据位置和暴风雨强度,速度1-3天的密度降低可能会发生1--3天。
translated by 谷歌翻译
预测基金绩效对投资者和基金经理都是有益的,但这是一项艰巨的任务。在本文中,我们测试了深度学习模型是否比传统统计技术更准确地预测基金绩效。基金绩效通常通过Sharpe比率进行评估,该比例代表了风险调整的绩效,以确保基金之间有意义的可比性。我们根据每月收益率数据序列数据计算了年度夏普比率,该数据的时间序列数据为600多个投资于美国上市大型股票的开放式共同基金投资。我们发现,经过现代贝叶斯优化训练的长期短期记忆(LSTM)和封闭式复发单元(GRUS)深度学习方法比传统统计量相比,预测基金的Sharpe比率更高。结合了LSTM和GRU的预测的合奏方法,可以实现所有模型的最佳性能。有证据表明,深度学习和结合能提供有希望的解决方案,以应对基金绩效预测的挑战。
translated by 谷歌翻译
短期负荷预测(STLF)由于复杂的时间序列(TS)是一种表达三个季节性模式和非线性趋势的挑战。本文提出了一种新的混合分层深度学习模型,涉及多个季节性,并产生两点预测和预测间隔(PIS)。它结合了指数平滑(ES)和经常性神经网络(RNN)。 ES动态提取每个单独的TS的主要组件,并启用在飞行的临时化,这在相对较小的数据集上操作时特别有用。多层RNN配备了一种新型扩张的经常性电池,旨在有效地模拟TS中的短期和长期依赖性。为了改善内部TS表示,因此模型的性能,RNN同时学习ES参数和主要映射函数将输入转换为预测。我们比较我们对几种基线方法的方法,包括古典统计方法和机器学习(ML)方法,在35个欧洲国家的STLF问题。实证研究清楚地表明,该模型具有高表现力,以解决非线性随机预测问题,包括多个季节性和显着的随机波动。实际上,它在准确性方面优于统计和最先进的ML模型。
translated by 谷歌翻译
In this paper, we propose a new short-term load forecasting (STLF) model based on contextually enhanced hybrid and hierarchical architecture combining exponential smoothing (ES) and a recurrent neural network (RNN). The model is composed of two simultaneously trained tracks: the context track and the main track. The context track introduces additional information to the main track. It is extracted from representative series and dynamically modulated to adjust to the individual series forecasted by the main track. The RNN architecture consists of multiple recurrent layers stacked with hierarchical dilations and equipped with recently proposed attentive dilated recurrent cells. These cells enable the model to capture short-term, long-term and seasonal dependencies across time series as well as to weight dynamically the input information. The model produces both point forecasts and predictive intervals. The experimental part of the work performed on 35 forecasting problems shows that the proposed model outperforms in terms of accuracy its predecessor as well as standard statistical models and state-of-the-art machine learning models.
translated by 谷歌翻译
A well-performing prediction model is vital for a recommendation system suggesting actions for energy-efficient consumer behavior. However, reliable and accurate predictions depend on informative features and a suitable model design to perform well and robustly across different households and appliances. Moreover, customers' unjustifiably high expectations of accurate predictions may discourage them from using the system in the long term. In this paper, we design a three-step forecasting framework to assess predictability, engineering features, and deep learning architectures to forecast 24 hourly load values. First, our predictability analysis provides a tool for expectation management to cushion customers' anticipations. Second, we design several new weather-, time- and appliance-related parameters for the modeling procedure and test their contribution to the model's prediction performance. Third, we examine six deep learning techniques and compare them to tree- and support vector regression benchmarks. We develop a robust and accurate model for the appliance-level load prediction based on four datasets from four different regions (US, UK, Austria, and Canada) with an equal set of appliances. The empirical results show that cyclical encoding of time features and weather indicators alongside a long-short term memory (LSTM) model offer the optimal performance.
translated by 谷歌翻译
Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare. The presence of anomalies can indicate novel or unexpected events, such as production faults, system defects, or heart fluttering, and is therefore of particular interest. The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns. This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning. It providing a taxonomy based on the factors that divide anomaly detection models into different categories. Aside from describing the basic anomaly detection technique for each category, the advantages and limitations are also discussed. Furthermore, this study includes examples of deep anomaly detection in time series across various application domains in recent years. It finally summarises open issues in research and challenges faced while adopting deep anomaly detection models.
translated by 谷歌翻译
了解极端事件及其可能性是研究气候变化影响,风险评估,适应和保护生物的关键。在这项工作中,我们开发了一种方法来构建极端热浪的预测模型。这些模型基于卷积神经网络,对极长的8,000年气候模型输出进行了培训。由于极端事件之间的关系本质上是概率的,因此我们强调概率预测和验证。我们证明,深度神经网络适用于法国持续持续14天的热浪,快速动态驱动器提前15天(500 hpa地球电位高度场),并且在慢速较长的交货时间内,慢速物理时间驱动器(土壤水分)。该方法很容易实现和通用。我们发现,深神经网络选择了与北半球波数字3模式相关的极端热浪。我们发现,当将2米温度场添加到500 HPA地球电位高度和土壤水分场中时,2米温度场不包含任何新的有用统计信息。主要的科学信息是,训练深层神经网络预测极端热浪的发生是在严重缺乏数据的情况下发生的。我们建议大多数其他应用在大规模的大气和气候现象中都是如此。我们讨论了处理缺乏数据制度的观点,例如罕见的事件模拟,以及转移学习如何在后一种任务中发挥作用。
translated by 谷歌翻译
太阳能现在是历史上最便宜的电力形式。不幸的是,由于其变异性,显着提高栅格的太阳能的一部分仍然具有挑战性,这使得电力的供需平衡更加困难。虽然热发电机坡度 - 它们可以改变输出的最高速率 - 是有限的,太阳能的坡度基本上是无限的。因此,准确的近期太阳能预测或垂圈,对于提供预警来调整热发电机输出,以响应于太阳能变化来调整热发电机,以确保平衡供需。为了解决问题,本文开发了使用自我监督学习的丰富和易于使用的多光谱卫星数据的太阳能垂圈的一般模型。具体而言,我们使用卷积神经网络(CNN)和长短期内存网络(LSTM)开发深度自动回归模型,这些模型在多个位置训练全球培训,以预测最近推出的最近收集的时空数据的未来观察-R系列卫星。我们的模型估计了基于卫星观测的未来的太阳辐照度,我们向较小的场地特定的太阳能数据培训的回归模型提供,以提供近期太阳能光伏(PV)预测,其考虑了现场特征的特征。我们评估了我们在25个太阳能场所的不同覆盖区域和预测视野的方法,并表明我们的方法利用地面真理观察结果产生靠近模型的错误。
translated by 谷歌翻译
自50年代后期以来,当发射第一个人造卫星时,居民太空物品(RSO)的数量已稳步增加。据估计,目前约有100万个大于1厘米的物体正在绕地球绕,只有30,000个,大于10厘米,目前正在跟踪。为了避免碰撞的链反应,称为凯斯勒综合征,必须准确跟踪和预测空间碎片和卫星的轨道是必不可少的。当前基于物理的方法在7天的预测中存在误差,在考虑大部分小于1米的空间碎片时,这是不够的。通常,这种故障是由于轨迹开始时空间对象状态周围的不确定性,在环境条件(例如大气阻力)中的预测错误以及RSO的质量或几何形状等特定的未知特征。利用数据驱动的技术,即机器学习,可以提高轨道预测准确性:通过得出未测量的对象的特征,改善非保守力的效果,并通过深度学习模型具有高度复杂的非复杂性非 - 的卓越抽象能力来建模线性系统。在这项调查中,我们概述了该领域正在完成的当前工作。
translated by 谷歌翻译
目前,由精确的径向速度(RV)观察结果受到恒星活性引入的虚假RV信号的限制。我们表明,诸如线性回归和神经网络之类的机器学习技术可以有效地从RV观测中删除活动信号(由于星形/张图引起的)。先前的工作着重于使用高斯工艺回归等建模技术仔细地过滤活性信号(例如Haywood等人,2014年)。取而代之的是,我们仅使用对光谱线平均形状的更改进行系统地删除活动信号,也没有有关收集观测值的信息。我们对模拟数据(使用SOAP 2.0软件生成; Dumusque等人,2014年生成)和从Harps-N太阳能望远镜(Dumusque等,2015; Phillips等人2015; 2016; Collier训练)培训了机器学习模型。 Cameron等人2019)。我们发现,这些技术可以从模拟数据(将RV散射从82 cm/s提高到3 cm/s)以及从HARPS-N太阳能望远镜中几乎每天进行的600多种真实观察结果来预测和消除恒星活动(将RV散射从82 cm/s提高到3 cm/s)。 (将RV散射从1.753 m/s提高到1.039 m/s,提高了约1.7倍)。将来,这些或类似的技术可能会从太阳系以外的恒星观察中去除活动信号,并最终有助于检测到阳光状恒星周围可居住的区域质量系外行星。
translated by 谷歌翻译
检测,预测和减轻交通拥堵是针对改善运输网络的服务水平的目标。随着对更高分辨率的更大数据集的访问,深度学习对这种任务的相关性正在增加。近年来几篇综合调查论文总结了运输领域的深度学习应用。然而,运输网络的系统动态在非拥挤状态和拥塞状态之间变化大大变化 - 从而需要清楚地了解对拥堵预测特异性特异性的挑战。在这项调查中,我们在与检测,预测和缓解拥堵相关的任务中,介绍了深度学习应用的当前状态。重复和非经常性充血是单独讨论的。我们的调查导致我们揭示了当前研究状态的固有挑战和差距。最后,我们向未来的研究方向提出了一些建议,因为所确定的挑战的答案。
translated by 谷歌翻译
生产精确的天气预报和不确定的不确定性的可靠量化是一个开放的科学挑战。到目前为止,集团预测是最成功的方法,以产生相关预测的方法以及估计其不确定性。集合预测的主要局限性是高计算成本,难以捕获和量化不同的不确定性来源,特别是与模型误差相关的源。在这项工作中,进行概念证据模型实验,以检查培训的ANN的性能,以预测系统的校正状态和使用单个确定性预测作为输入的状态不确定性。我们比较不同的培训策略:一个基于使用集合预测的平均值和传播作为目标的直接培训,另一个依赖于使用确定性预测作为目标的决定性预测,其中来自数据隐含地学习不确定性。对于最后一种方法,提出和评估了两个替代损失函数,基于数据观察似然和基于误差的本地估计来评估另一个丢失功能。在不同的交货时间和方案中检查网络的性能,在没有模型错误的情况下。使用Lorenz'96模型的实验表明,ANNS能够模拟集合预测的一些属性,如最不可预测模式的过滤和预测不确定性的状态相关量化。此外,ANNS提供了在模型误差存在下的预测不确定性的可靠估计。
translated by 谷歌翻译
Flooding is one of the most disastrous natural hazards, responsible for substantial economic losses. A predictive model for flood-induced financial damages is useful for many applications such as climate change adaptation planning and insurance underwriting. This research assesses the predictive capability of regressors constructed on the National Flood Insurance Program (NFIP) dataset using neural networks (Conditional Generative Adversarial Networks), decision trees (Extreme Gradient Boosting), and kernel-based regressors (Gaussian Process). The assessment highlights the most informative predictors for regression. The distribution for claims amount inference is modeled with a Burr distribution permitting the introduction of a bias correction scheme and increasing the regressor's predictive capability. Aiming to study the interaction with physical variables, we incorporate Daymet rainfall estimation to NFIP as an additional predictor. A study on the coastal counties in the eight US South-West states resulted in an $R^2=0.807$. Further analysis of 11 counties with a significant number of claims in the NFIP dataset reveals that Extreme Gradient Boosting provides the best results, that bias correction significantly improves the similarity with the reference distribution, and that the rainfall predictor strengthens the regressor performance.
translated by 谷歌翻译
谷歌的运营洪水预测系统是制定的,为机构和公众提供准确的实时洪水警告,重点是河流洪水在大型潮流的河流中。它在2018年开始运作,自从地理位置扩展以来。该预测系统由四个子系统组成:数据验证,阶段预测,淹没建模和警报分配。机器学习用于两个子系统。阶段预测采用长短期内存(LSTM)网络和线性模型进行建模。使用阈值和歧管模型计算洪水淹没,前者计算淹没程度,后者计算淹没程度和深度。本文首次提供的歧管模型提供了一种机器学习替代洪水淹没的液压建模。在评估历史数据时,所有型号都可以实现可操作使用的足够高的度量指标。 LSTM表现出比线性模型更高的技能,而阈值和歧管模型达到了类似的性能度量,以便在淹没程度上进行建模。在2021年的季风季节期间,洪水预警系统在印度和孟加拉国运营,覆盖河流的洪水区,总面积287,000平方公里,拥有350多万人。超过100米的洪水警报被发送给受影响的人口,相关当局以及紧急组织。系统上的当前和未来的工作包括将覆盖范围扩展到额外的洪水易发位置,以及提高建模能力和准确性。
translated by 谷歌翻译
提出了一个深度学习模型,以便在未来60分钟的五分钟时间分辨率下以闪电的形式出现。该模型基于反复横向的结构,该结构使其能够识别并预测对流的时空发展,包括雷暴细胞的运动,生长和衰变。预测是在固定网格上执行的,而无需使用风暴对象检测和跟踪。从瑞士和周围的区域收集的输入数据包括地面雷达数据,可见/红外卫星数据以及衍生的云产品,闪电检测,数值天气预测和数字高程模型数据。我们分析了不同的替代损失功能,班级加权策略和模型特征,为将来的研究提供了指南,以最佳地选择损失功能,并正确校准其模型的概率预测。基于这些分析,我们在这项研究中使用焦点损失,但得出结论,它仅在交叉熵方面提供了较小的好处,如果模型的重新校准不实用,这是一个可行的选择。该模型在60分钟的现有周期内实现了0.45的像素临界成功指数(CSI)为0.45,以预测8 km的闪电发生,范围从5分钟的CSI到5分钟的提前时间到CSI到CSI的0.32在A处。收货时间60分钟。
translated by 谷歌翻译
传统上,基于标度律维模型已被用于参数对流换热岩类地行星像地球,火星,水星和金星的内部,以解决二维或三维高保真前插的计算瓶颈。然而,这些在物理它们可以建模(例如深度取决于材料特性),并预测只平均量的量的限制,例如平均温度地幔。我们最近发现,前馈神经网络(FNN),使用了大量的二维模拟可以克服这个限制和可靠地预测整个1D横向平均温度分布的演变,及时为复杂的模型训练。我们现在扩展该方法以预测的完整2D温度字段,它包含在对流结构如热羽状和冷downwellings的形式的信息。使用的地幔热演化的10,525二维模拟数据集火星般的星球,我们表明,深度学习技术能够产生可靠的参数代理人(即代理人即预测仅基于参数状态变量,如温度)底层偏微分方程。我们首先使用卷积自动编码由142倍以压缩温度场,然后使用FNN和长短期存储器网络(LSTM)来预测所述压缩字段。平均起来,FNN预测是99.30%,并且LSTM预测是准确相对于看不见模拟99.22%。在LSTM和FNN预测显示,尽管较低的绝对平均相对精度,LSTMs捕捉血流动力学优于FNNS适当的正交分解(POD)。当求和,从FNN预测和从LSTM预测量至96.51%,相对97.66%到原始模拟的系数,分别与POD系数。
translated by 谷歌翻译
A digital twin is defined as a virtual representation of a physical asset enabled through data and simulators for real-time prediction, optimization, monitoring, controlling, and improved decision-making. Unfortunately, the term remains vague and says little about its capability. Recently, the concept of capability level has been introduced to address this issue. Based on its capability, the concept states that a digital twin can be categorized on a scale from zero to five, referred to as standalone, descriptive, diagnostic, predictive, prescriptive, and autonomous, respectively. The current work introduces the concept in the context of the built environment. It demonstrates the concept by using a modern house as a use case. The house is equipped with an array of sensors that collect timeseries data regarding the internal state of the house. Together with physics-based and data-driven models, these data are used to develop digital twins at different capability levels demonstrated in virtual reality. The work, in addition to presenting a blueprint for developing digital twins, also provided future research directions to enhance the technology.
translated by 谷歌翻译