Unsupervised domain adaptation (UDA) aims to learn a model trained on source domain and performs well on unlabeled target domain. In medical image segmentation field, most existing UDA methods depend on adversarial learning to address the domain gap between different image modalities, which is ineffective due to its complicated training process. In this paper, we propose a simple yet effective UDA method based on frequency and spatial domain transfer uner multi-teacher distillation framework. In the frequency domain, we first introduce non-subsampled contourlet transform for identifying domain-invariant and domain-variant frequency components (DIFs and DVFs), and then keep the DIFs unchanged while replacing the DVFs of the source domain images with that of the target domain images to narrow the domain gap. In the spatial domain, we propose a batch momentum update-based histogram matching strategy to reduce the domain-variant image style bias. Experiments on two cross-modality medical image segmentation datasets (cardiac, abdominal) show that our proposed method achieves superior performance compared to state-of-the-art methods.
translated by 谷歌翻译
实现域适应是有价值的,以将学习知识从标记为CT数据集传输到腹部多器官分段的目标未标记的MR DataSet。同时,非常希望避免目标数据集的高注重成本并保护源数据集的隐私。因此,我们提出了一种有效的无核心无监督域适应方法,用于跨型号腹部多器官分段而不访问源数据集。所提出的框架的过程包括两个阶段。在第一阶段,特征映射统计损失用于对准顶部分段网络中的源和目标特征的分布,并使用熵最小化损耗来鼓励高席位细分。从顶部分段网络输出的伪标签用于指导样式补偿网络生成类似源图像。从中间分割网络输出的伪标签用于监督所需模型的学习(底部分段网络)。在第二阶段,循环学习和像素自适应掩模细化用于进一步提高所需模型的性能。通过这种方法,我们在肝脏,肾脏,左肾肾脏和脾脏的分割中实现了令人满意的性能,骰子相似系数分别为0.884,0.891,0.864和0.911。此外,当存在目标注释数据时,所提出的方法可以很容易地扩展到情况。该性能在平均骰子相似度系数的0.888至0.922增加到0.888至0.922,靠近监督学习(0.929),只有一个标记的MR卷。
translated by 谷歌翻译
While deep learning methods hitherto have achieved considerable success in medical image segmentation, they are still hampered by two limitations: (i) reliance on large-scale well-labeled datasets, which are difficult to curate due to the expert-driven and time-consuming nature of pixel-level annotations in clinical practices, and (ii) failure to generalize from one domain to another, especially when the target domain is a different modality with severe domain shifts. Recent unsupervised domain adaptation~(UDA) techniques leverage abundant labeled source data together with unlabeled target data to reduce the domain gap, but these methods degrade significantly with limited source annotations. In this study, we address this underexplored UDA problem, investigating a challenging but valuable realistic scenario, where the source domain not only exhibits domain shift~w.r.t. the target domain but also suffers from label scarcity. In this regard, we propose a novel and generic framework called ``Label-Efficient Unsupervised Domain Adaptation"~(LE-UDA). In LE-UDA, we construct self-ensembling consistency for knowledge transfer between both domains, as well as a self-ensembling adversarial learning module to achieve better feature alignment for UDA. To assess the effectiveness of our method, we conduct extensive experiments on two different tasks for cross-modality segmentation between MRI and CT images. Experimental results demonstrate that the proposed LE-UDA can efficiently leverage limited source labels to improve cross-domain segmentation performance, outperforming state-of-the-art UDA approaches in the literature. Code is available at: https://github.com/jacobzhaoziyuan/LE-UDA.
translated by 谷歌翻译
形状信息在医学图像中分割器官方面是强大而有价值的先验。但是,当前大多数基于深度学习的分割算法尚未考虑形状信息,这可能导致对纹理的偏见。我们旨在明确地对形状进行建模并使用它来帮助医疗图像分割。先前的方法提出了基于变异的自动编码器(VAE)模型,以了解特定器官的形状分布,并通过将其拟合到学习的形状分布中来自动评估分割预测的质量。我们旨在将VAE纳入当前的分割管道中。具体而言,我们提出了一种基于伪损失和在教师学习范式下的VAE重建损失的新的无监督域适应管道。两种损失都是同时优化的,作为回报,提高了分割任务性能。对三个公共胰腺细分数据集以及两个内部胰腺细分数据集进行了广泛的实验,显示了一致的改进,骰子分数中至少有2.8分的增益,这表明了我们方法在挑战无监督的域适应性方案中对医学图像分割的有效性。我们希望这项工作能够在医学成像中提高形状分析和几何学习。
translated by 谷歌翻译
卷积神经网络(CNN)已经实现了医学图像细分的最先进性能,但需要大量的手动注释进行培训。半监督学习(SSL)方法有望减少注释的要求,但是当数据集大小和注释图像的数量较小时,它们的性能仍然受到限制。利用具有类似解剖结构的现有注释数据集来协助培训,这有可能改善模型的性能。然而,由于目标结构的外观不同甚至成像方式,跨解剖结构域的转移进一步挑战。为了解决这个问题,我们提出了跨解剖结构域适应(CS-CADA)的对比度半监督学习,该学习适应一个模型以在目标结构域中细分相似的结构,这仅需要通过利用一组现有现有的现有的目标域中的限制注释源域中相似结构的注释图像。我们使用特定领域的批归归量表(DSBN)来单独地标准化两个解剖域的特征图,并提出跨域对比度学习策略,以鼓励提取域不变特征。它们被整合到一个自我兼容的均值老师(SE-MT)框架中,以利用具有预测一致性约束的未标记的目标域图像。广泛的实验表明,我们的CS-CADA能够解决具有挑战性的跨解剖结构域移位问题,从而在视网膜血管图像和心脏MR图像的帮助下,在X射线图像中准确分割冠状动脉,并借助底底图像,分别仅给定目标域中的少量注释。
translated by 谷歌翻译
在图像识别中已广泛提出了生成模型,以生成更多图像,其中分布与真实图像相似。它通常会引入一个歧视网络,以区分真实数据与生成的数据。这样的模型利用了一个歧视网络,该网络负责以区分样式从目标数据集中包含的数据传输的数据。但是,这样做的网络着重于强度分布的差异,并可能忽略数据集之间的结构差异。在本文中,我们制定了一个新的图像到图像翻译问题,以确保生成的图像的结构类似于目标数据集中的图像。我们提出了一个简单但功能强大的结构不稳定的对抗(SUA)网络,该网络在执行图像分割时介绍了训练和测试集之间的强度和结构差异。它由空间变换块组成,然后是强度分布渲染模块。提出了空间变换块来减少两个图像之间的结构缝隙,还产生了一个反变形字段,以使最终的分段图像背部扭曲。然后,强度分布渲染模块将变形结构呈现到具有目标强度分布的图像。实验结果表明,所提出的SUA方法具有在多个数据集之间传递强度分布和结构含量的能力。
translated by 谷歌翻译
对于医学图像分析,在一个或几个领域训练的分割模型由于不同数据采集策略之间的差异而缺乏概括性的能力,无法看不见域。我们认为,分割性能的退化主要归因于过度拟合源域和域移位。为此,我们提出了一种新颖的可推广医学图像分割方法。要具体而言,我们通过将分割模型与自学域特异性图像恢复(DSIR)模块相结合,将方法设计为多任务范式。我们还设计了一个随机的振幅混音(RAM)模块,该模块结合了不同域图像的低级频率信息以合成新图像。为了指导我们的模型对域转移有抵抗力,我们引入了语义一致性损失。我们证明了我们在医学图像中两个可公开的分段基准测试中的方法的性能,这证实了我们的方法可以实现最先进的性能。
translated by 谷歌翻译
语义分割在广泛的计算机视觉应用中起着基本作用,提供了全球对图像​​的理解的关键信息。然而,最先进的模型依赖于大量的注释样本,其比在诸如图像分类的任务中获得更昂贵的昂贵的样本。由于未标记的数据替代地获得更便宜,因此无监督的域适应达到了语义分割社区的广泛成功并不令人惊讶。本调查致力于总结这一令人难以置信的快速增长的领域的五年,这包含了语义细分本身的重要性,以及将分段模型适应新环境的关键需求。我们提出了最重要的语义分割方法;我们对语义分割的域适应技术提供了全面的调查;我们揭示了多域学习,域泛化,测试时间适应或无源域适应等较新的趋势;我们通过描述在语义细分研究中最广泛使用的数据集和基准测试来结束本调查。我们希望本调查将在学术界和工业中提供具有全面参考指导的研究人员,并有助于他们培养现场的新研究方向。
translated by 谷歌翻译
开放的复合域适应(OCDA)将目标域视为多个未知同质子域的化合物。 OCDA的目的是最大程度地减少标记的源域和未标记的复合目标域之间的域间隙,这使对未见域的模型概括有益。当前用于语义分割方法的OCDA采用手动域分离,并采用单个模型同时适应所有目标子域。但是,适应目标子域可能会阻碍该模型适应其他不同目标子域,从而导致性能有限。在这项工作中,我们引入了一个带有双向光度混合的多教学框架,以分别适应每个目标子域。首先,我们提出一个自动域分离,以找到最佳的子域数。在此基础上,我们提出了一个多教学框架,在该框架中,每个教师模型都使用双向光度混合来适应一个目标子域。此外,我们进行自适应蒸馏以学习学生模型并应用一致性正规化以改善学生的概括。基准数据集上的实验结果显示了针对复合域和开放域对现有最新方法的拟议方法的功效。
translated by 谷歌翻译
Unsupervised domain adaptation (UDA) for semantic segmentation is a promising task freeing people from heavy annotation work. However, domain discrepancies in low-level image statistics and high-level contexts compromise the segmentation performance over the target domain. A key idea to tackle this problem is to perform both image-level and feature-level adaptation jointly. Unfortunately, there is a lack of such unified approaches for UDA tasks in the existing literature. This paper proposes a novel UDA pipeline for semantic segmentation that unifies image-level and feature-level adaptation. Concretely, for image-level domain shifts, we propose a global photometric alignment module and a global texture alignment module that align images in the source and target domains in terms of image-level properties. For feature-level domain shifts, we perform global manifold alignment by projecting pixel features from both domains onto the feature manifold of the source domain; and we further regularize category centers in the source domain through a category-oriented triplet loss and perform target domain consistency regularization over augmented target domain images. Experimental results demonstrate that our pipeline significantly outperforms previous methods. In the commonly tested GTA5$\rightarrow$Cityscapes task, our proposed method using Deeplab V3+ as the backbone surpasses previous SOTA by 8%, achieving 58.2% in mIoU.
translated by 谷歌翻译
基于对抗性学习的现有无监督的域适应方法在多个医学成像任务中取得了良好的表现。但是,这些方法仅着眼于全局分布适应,而忽略了类别级别的分布约束,这将导致次级适应性的性能。本文基于类别级别的正则化提出了一个无监督的域适应框架,该框架从三个角度正规化了类别分布。具体而言,对于域间类别的正则化,提出了一个自适应原型比对模块,以使源和目标域中同一类别的特征原型对齐。此外,对于域内类别的正则化,我们分别针对源和目标域定制了正则化技术。在源域中,提出了原型引导的判别性损失,以通过执行阶层内紧凑性和类间的分离性来学习更多的判别特征表示,并作为对传统监督损失的补充。在目标域中,提出了增强的一致性类别的正则化损失,以迫使该模型为增强/未增强目标图像提供一致的预测,这鼓励在语义上相似的区域给予相同的标签。在两个公共底面数据集上进行的广泛实验表明,所提出的方法显着优于其他最先进的比较算法。
translated by 谷歌翻译
无监督的交叉模式医学图像适应旨在减轻不同成像方式之间的严重域间隙,而无需使用目标域标签。该活动的关键依赖于对齐源和目标域的分布。一种常见的尝试是强制两个域之间的全局对齐,但是,这忽略了致命的局部不平衡域间隙问题,即,一些具有较大域间隙的局部特征很难转移。最近,某些方法进行一致性,重点是地方区域,以提高模型学习的效率。尽管此操作可能会导致上下文中关键信息的缺陷。为了应对这一限制,我们提出了一种新的策略,以减轻医学图像的特征,即全球本地联盟的一致性,以减轻域间隙不平衡。具体而言,功能 - 触发样式转移模块首先合成类似目标的源包含图像,以减少全局域间隙。然后,集成了本地功能掩码,以通过优先考虑具有较大域间隙的判别特征来减少本地特征的“间隙”。全球和局部对齐的这种组合可以精确地将关键区域定位在分割目标中,同时保持整体语义一致性。我们进行了一系列具有两个跨模式适应任务的实验,i,e。心脏子结构和腹部多器官分割。实验结果表明,我们的方法在这两个任务中都达到了最新的性能。
translated by 谷歌翻译
域自适应对象检测(DAOD)旨在改善探测和测试数据来自不同域时的探测器的泛化能力。考虑到显着的域间隙,一些典型方法,例如基于Conscangan的方法,采用中间域来逐步地桥接源域和靶域。然而,基于Conscangan的中间域缺少对象检测的PIX或实例级监控,这导致语义差异。为了解决这个问题,在本文中,我们介绍了具有四种不同的低频滤波器操作的频谱增强一致性(FSAC)框架。通过这种方式,我们可以获得一系列增强数据作为中间域。具体地,我们提出了一种两级优化框架。在第一阶段,我们利用所有原始和增强的源数据来训练对象检测器。在第二阶段,采用增强源和目标数据,具有伪标签来执行预测一致性的自培训。使用均值优化的教师模型用于进一步修改伪标签。在实验中,我们分别评估了我们在单一和复合目标DAOD上的方法,这证明了我们方法的有效性。
translated by 谷歌翻译
这项工作提出了一个新颖的框架CISFA(对比图像合成和自我监督的特征适应),该框架建立在图像域翻译和无监督的特征适应性上,以进行跨模式生物医学图像分割。与现有作品不同,我们使用单方面的生成模型,并在输入图像的采样贴片和相应的合成图像之间添加加权贴片对比度损失,该图像用作形状约束。此外,我们注意到生成的图像和输入图像共享相似的结构信息,但具有不同的方式。因此,我们在生成的图像和输入图像上强制实施对比损失,以训练分割模型的编码器,以最大程度地减少学到的嵌入空间中成对图像之间的差异。与依靠对抗性学习进行特征适应的现有作品相比,这种方法使编码器能够以更明确的方式学习独立于域的功能。我们对包含腹腔和全心的CT和MRI图像的分割任务进行了广泛评估。实验结果表明,所提出的框架不仅输出了较小的器官形状变形的合成图像,而且还超过了最先进的域适应方法的较大边缘。
translated by 谷歌翻译
对于医学图像分割,想象一下,如果仅使用源域中的MR图像训练模型,它的性能如何直接在目标域中进行CT图像?这种设置,即概括的跨模块分割,拥有其临床潜力,其比其他相关设置更具挑战性,例如域适应。为实现这一目标,我们本文通过利用在我们更广泛的分割期间利用增强的源相似和源不同的图像来提出新的双标准化模块。具体而言,给定单个源域,旨在模拟未经证明的目标域中可能的外观变化,我们首先利用非线性变换来增加源相似和源不同的图像。然后,为了充分利用这两种类型的增强,我们所提出的基于双重定量的模型采用共享骨干但独立的批量归一化层,用于单独归一化。之后,我们提出了一种基于风格的选择方案来自动选择测试阶段的适当路径。在三个公开可用的数据集上进行了广泛的实验,即Brats,跨型心脏和腹部多器官数据集表明我们的方法优于其他最先进的域概括方法。
translated by 谷歌翻译
现代深层神经网络在部署到现实世界应用程序时努力转移知识并跨越不同领域的知识。当前,引入了域的概括(DG),以从多个域中学习通用表示,以提高看不见的域的网络泛化能力。但是,以前的DG方法仅关注数据级的一致性方案,而无需考虑不同一致性方案之间的协同正则化。在本文中,我们通过通过协同整合外在的一致性和内在的一致性来提出一个新型的域概括(HCDG)层次一致性框架。特别是对于外部一致性,我们利用跨多个源域的知识来强制数据级的一致性。为了更好地提高这种一致性,我们将新型的高斯混合策略设计为基于傅立叶的数据增强,称为domainup。对于固有的一致性,我们在双重任务方案下对同一实例执行任务级的一致性。我们在两个医学图像分割任务上评估了提出的HCDG框架,即对眼底图像和前列腺MRI分割的视频杯/圆盘分割。广泛的实验结果表明了我们的HCDG框架的有效性和多功能性。
translated by 谷歌翻译
无监督的域适应性(UDA)是解决一个问题的关键技术之一,很难获得监督学习所需的地面真相标签。通常,UDA假设在培训过程中可以使用来自源和目标域中的所有样本。但是,在涉及数据隐私问题的应用下,这不是现实的假设。为了克服这一限制,最近提出了无源数据的UDA,即无源无监督的域适应性(SFUDA)。在这里,我们提出了一种用于医疗图像分割的SFUDA方法。除了在UDA中通常使用的熵最小化方法外,我们还引入了一个损失函数,以避免目标域中的特征规范和在保留目标器官的形状约束之前。我们使用数据集进行实验,包括多种类型的源目标域组合,以显示我们方法的多功能性和鲁棒性。我们确认我们的方法优于所有数据集中的最先进。
translated by 谷歌翻译
通过采用卷积神经网络(CNN)进行电路结构的分割,深度学习在具有挑战性的电路注释任务中取得了巨大的成功。深度学习方法需要大量手动注释的培训数据才能实现良好的性能,如果在给定数据集上培训的深度学习模型被应用于其他数据集,则可能导致性能降解。这通常称为电路注释的域移位问题,这源于不同图像数据集的分布的较大变化。可以从单个设备中的不同设备或不同层获得不同的图像数据集。为了解决域移位问题,我们提出了直方图门控图像翻译(HGIT),这是一个无监督的域适应框架,将图像从给定的源数据集转换为目标数据集的域,并利用转换的图像来训练段网络。具体而言,我们的HGIT执行基于生成的对抗网络(GAN)的图像翻译,并利用直方图统计数据进行数据策划。实验是在适应三个不同目标数据集(无标签的单个标记源数据集上进行的,并评估了每个目标数据集的分割性能。我们已经证明,与报道的域适应技术相比,我们的方法达到了最佳性能,并且还可以合理地接近完全监督的基准。
translated by 谷歌翻译
深度神经网络(DNN)极大地促进了语义分割中的性能增益。然而,训练DNN通常需要大量的像素级标记数据,这在实践中收集昂贵且耗时。为了减轻注释负担,本文提出了一种自组装的生成对抗网络(SE-GAN)利用语义分割的跨域数据。在SE-GaN中,教师网络和学生网络构成用于生成语义分割图的自组装模型,与鉴别器一起形成GaN。尽管它很简单,我们发现SE-GaN可以显着提高对抗性训练的性能,提高模型的稳定性,这是由大多数普遍培训的方法共享的常见障碍。我们理论上分析SE-GaN并提供$ \ Mathcal o(1 / \ sqrt {n})$泛化绑定($ n $是培训样本大小),这表明控制了鉴别者的假设复杂性,以提高概括性。因此,我们选择一个简单的网络作为鉴别器。两个标准设置中的广泛和系统实验表明,该方法显着优于最新的最先进的方法。我们模型的源代码即将推出。
translated by 谷歌翻译
Convolutional neural network-based approaches for semantic segmentation rely on supervision with pixel-level ground truth, but may not generalize well to unseen image domains. As the labeling process is tedious and labor intensive, developing algorithms that can adapt source ground truth labels to the target domain is of great interest. In this paper, we propose an adversarial learning method for domain adaptation in the context of semantic segmentation. Considering semantic segmentations as structured outputs that contain spatial similarities between the source and target domains, we adopt adversarial learning in the output space. To further enhance the adapted model, we construct a multi-level adversarial network to effectively perform output space domain adaptation at different feature levels. Extensive experiments and ablation study are conducted under various domain adaptation settings, including synthetic-to-real and cross-city scenarios. We show that the proposed method performs favorably against the stateof-the-art methods in terms of accuracy and visual quality.
translated by 谷歌翻译