深度学习已经变得过于复杂,并且在解决图像分类,对象检测等若干古典问题方面享有恒星的成功。已经提出了几种解释这些决定的方法。由于它们不利用模型的内部来解释该决定,为生成显着性图产生显着性图的方法特别感到很有趣。大多数黑匣子方法扰乱了输入并观察输出的变化。我们将显着的图形制定为顺序搜索问题,并利用加强学习(RL)来累积来自输入图像的证据,最强烈地支持分类器的决策。这种战略鼓励智能地搜索扰动,这将导致高质量的解释。虽然成功的黑匣子解释方法需要依靠重计算并遭受小的样本近似,但我们的方法学到的确定性政策使得在推理期间更有效。三个基准数据集的实验证明了在不损害性能的情况下推动了推理时间的提议方法的优越性。项目页面:https://cvir.github.io/projects/rexl.html
translated by 谷歌翻译
Deep neural networks are being used increasingly to automate data analysis and decision making, yet their decision-making process is largely unclear and is difficult to explain to the end users. In this paper, we address the problem of Explainable AI for deep neural networks that take images as input and output a class probability. We propose an approach called RISE that generates an importance map indicating how salient each pixel is for the model's prediction. In contrast to white-box approaches that estimate pixel importance using gradients or other internal network state, RISE works on blackbox models. It estimates importance empirically by probing the model with randomly masked versions of the input image and obtaining the corresponding outputs. We compare our approach to state-of-the-art importance extraction methods using both an automatic deletion/insertion metric and a pointing metric based on human-annotated object segments. Extensive experiments on several benchmark datasets show that our approach matches or exceeds the performance of other methods, including white-box approaches.
translated by 谷歌翻译
我们描述了一种新颖的归因方法,它基于敏感性分析并使用Sobol指数。除了模拟图像区域的个人贡献之外,索尔索尔指标提供了一种有效的方法来通过方差镜头捕获图像区域与其对神经网络的预测的贡献之间的高阶相互作用。我们描述了一种通过使用扰动掩模与有效估计器耦合的扰动掩模来计算用于高维问题的这些指标的方法,以处理图像的高维度。重要的是,我们表明,与其他黑盒方法相比,该方法对视觉(和语言模型)的标准基准测试的标准基准有利地导致了有利的分数 - 甚至超过最先进的白色的准确性 - 需要访问内部表示的箱方法。我们的代码是免费的:https://github.com/fel-thomas/sobol-attribution-method
translated by 谷歌翻译
本文提出了一种基于Hilbert-Schmidt独立标准(HSIC)的新有效的黑盒归因方法,这是一种基于再现核Hilbert Spaces(RKHS)的依赖度量。 HSIC测量了基于分布的内核的输入图像区域之间的依赖性和模型的输出。因此,它提供了由RKHS表示功能丰富的解释。可以非常有效地估计HSIC,与其他黑盒归因方法相比,大大降低了计算成本。我们的实验表明,HSIC的速度比以前的最佳黑盒归因方法快8倍,同时忠实。确实,我们改进或匹配了黑盒和白框归因方法的最新方法,用于具有各种最近的模型体系结构的Imagenet上的几个保真度指标。重要的是,我们表明这些进步可以被转化为有效而忠实地解释诸如Yolov4之类的对象检测模型。最后,我们通过提出一种新的内核来扩展传统的归因方法,从而实现基于HSIC的重要性分数的正交分解,从而使我们不仅可以评估每个图像贴片的重要性,还可以评估其成对相互作用的重要性。
translated by 谷歌翻译
近年来,可解释的人工智能(XAI)已成为一个非常适合的框架,可以生成人类对“黑盒”模型的可理解解释。在本文中,一种新颖的XAI视觉解释算法称为相似性差异和唯一性(SIDU)方法,该方法可以有效地定位负责预测的整个对象区域。通过各种计算和人类主题实验分析了SIDU算法的鲁棒性和有效性。特别是,使用三种不同类型的评估(应用,人类和功能地面)评估SIDU算法以证明其出色的性能。在对“黑匣子”模型的对抗性攻击的情况下,进一步研究了Sidu的鲁棒性,以更好地了解其性能。我们的代码可在:https://github.com/satyamahesh84/sidu_xai_code上找到。
translated by 谷歌翻译
自我监督的视觉学习彻底改变了深度学习,成为域中的下一个重大挑战,并通过大型计算机视觉基准的监督方法迅速缩小了差距。随着当前的模型和培训数据成倍增长,解释和理解这些模型变得关键。我们研究了视力任务的自我监督学习领域中可解释的人工智能的问题,并提出了了解经过自学训练的网络及其内部工作的方法。鉴于自我监督的视觉借口任务的巨大多样性,我们缩小了对理解范式的关注,这些范式从同一图像的两种观点中学习,主要是旨在了解借口任务。我们的工作重点是解释相似性学习,并且很容易扩展到所有其他借口任务。我们研究了两个流行的自我监督视觉模型:Simclr和Barlow Twins。我们总共开发了六种可视化和理解这些模型的方法:基于扰动的方法(条件闭塞,上下文无形的条件闭塞和成对的闭塞),相互作用-CAM,特征可视化,模型差异可视化,平均变换和像素无形。最后,我们通过将涉及单个图像的监督图像分类系统量身定制的众所周知的评估指标来评估这些解释,并将其涉及两个图像的自我监督学习领域。代码为:https://github.com/fawazsammani/xai-ssl
translated by 谷歌翻译
深度加强学习(RL)代理在一系列复杂的控制任务中变得越来越精通。然而,由于引入黑盒功能,代理的行为通常很难解释,使得难以获得用户的信任。虽然存在一些基于视觉的RL的有趣的解释方法,但大多数人都无法发现时间因果信息,提高其可靠性的问题。为了解决这个问题,我们提出了一个时间空间因果解释(TSCI)模型,以了解代理人的长期行为,这对于连续决策至关重要。 TSCI模型构建了颞会因果关系的制定,这反映了连续观测结果与RL代理的决策之间的时间因果关系。然后,采用单独的因果发现网络来识别时间空间因果特征,这被限制为满足时间因果关系。 TSCI模型适用于复发代理,可用于发现培训效率高效率的因果特征。经验结果表明,TSCI模型可以产生高分辨率和敏锐的关注掩模,以突出大多数关于视觉的RL代理如何顺序决策的最大证据的任务相关的时间空间信息。此外,我们还表明,我们的方法能够为从时刻视角提供有价值的基于视觉的RL代理的因果解释。
translated by 谷歌翻译
在几个机器学习应用领域,包括可解释的AI和弱监督的对象检测和细分,高质量的显着性图至关重要。已经开发了许多技术来使用神经网络提高显着性。但是,它们通常仅限于特定的显着性可视化方法或显着性问题。我们提出了一种新型的显着性增强方法,称为SESS(通过缩放和滑动增强显着性)。这是对现有显着性图生成方法的方法和模型不可或缺的扩展。借助SESS,现有的显着性方法变得稳健,可在尺度差异,目标对象的多次出现,分散器的存在以及产生较少的嘈杂和更具歧视性显着性图。 SESS通过从不同区域的不同尺度上从多个斑块中提取的显着图来提高显着性,并使用新型的融合方案结合了这些单独的地图,该方案结合了通道的重量和空间加权平均值。为了提高效率,我们引入了一个预过滤步骤,该步骤可以排除非信息显着图以提高效率,同时仍提高整体结果。我们在对象识别和检测基准上评估SESS可以取得重大改进。该守则公开发布以使研究人员能够验证绩效和进一步发展。代码可用:https://github.com/neouyghur/sess
translated by 谷歌翻译
Recently, increasing attention has been drawn to the internal mechanisms of convolutional neural networks, and the reason why the network makes specific decisions. In this paper, we develop a novel post-hoc visual explanation method called Score-CAM based on class activation mapping. Unlike previous class activation mapping based approaches, Score-CAM gets rid of the dependence on gradients by obtaining the weight of each activation map through its forward passing score on target class, the final result is obtained by a linear combination of weights and activation maps. We demonstrate that Score-CAM achieves better visual performance and fairness for interpreting the decision making process. Our approach outperforms previous methods on both recognition and localization tasks, it also passes the sanity check. We also indicate its application as debugging tools. The implementation is available 1 .
translated by 谷歌翻译
无法解释的黑框模型创建场景,使异常引起有害响应,从而造成不可接受的风险。这些风险促使可解释的人工智能(XAI)领域通过评估黑盒神经网络中的局部解释性来改善信任。不幸的是,基本真理对于模型的决定不可用,因此评估仅限于定性评估。此外,可解释性可能导致有关模型或错误信任感的不准确结论。我们建议通过探索Black-Box模型的潜在特征空间来从用户信任的有利位置提高XAI。我们提出了一种使用典型的几弹网络的Protoshotxai方法,该方法探索了不同类别的非线性特征之间的对比歧管。用户通过扰动查询示例的输入功能并记录任何类的示例子集的响应来探索多种多样。我们的方法是第一个可以将其扩展到很少的网络的本地解释的XAI模型。我们将ProtoShotxai与MNIST,Omniglot和Imagenet的最新XAI方法进行了比较,以进行定量和定性,Protoshotxai为模型探索提供了更大的灵活性。最后,Protoshotxai还展示了对抗样品的新颖解释和检测。
translated by 谷歌翻译
Saliency methods compute heat maps that highlight portions of an input that were most {\em important} for the label assigned to it by a deep net. Evaluations of saliency methods convert this heat map into a new {\em masked input} by retaining the $k$ highest-ranked pixels of the original input and replacing the rest with \textquotedblleft uninformative\textquotedblright\ pixels, and checking if the net's output is mostly unchanged. This is usually seen as an {\em explanation} of the output, but the current paper highlights reasons why this inference of causality may be suspect. Inspired by logic concepts of {\em completeness \& soundness}, it observes that the above type of evaluation focuses on completeness of the explanation, but ignores soundness. New evaluation metrics are introduced to capture both notions, while staying in an {\em intrinsic} framework -- i.e., using the dataset and the net, but no separately trained nets, human evaluations, etc. A simple saliency method is described that matches or outperforms prior methods in the evaluations. Experiments also suggest new intrinsic justifications, based on soundness, for popular heuristic tricks such as TV regularization and upsampling.
translated by 谷歌翻译
深神经网络(DNN)的黑盒性质严重阻碍了其在特定场景中的性能改善和应用。近年来,基于类激活映射的方法已被广泛用于解释计算机视觉任务中模型的内部决策。但是,当此方法使用反向传播获得梯度时,它将在显着图中引起噪声,甚至找到与决策无关的特征。在本文中,我们提出了一个基于绝对价值类激活映射(ABS-CAM)方法,该方法优化了从反向传播中得出的梯度,并将所有这些梯度变成正梯度,以增强输出神经元激活的视觉特征,并改善。显着图的本地化能力。 ABS-CAM的框架分为两个阶段:生成初始显着性图并生成最终显着图。第一阶段通过优化梯度来提高显着性图的定位能力,第二阶段将初始显着性图与原始图像线性结合在一起,以增强显着性图的语义信息。我们对拟议方法进行定性和定量评估,包括删除,插入和指向游戏。实验结果表明,ABS-CAM显然可以消除显着性图中的噪声,并且可以更好地定位与决策相关的功能,并且优于以前的识别和定位任务中的方法。
translated by 谷歌翻译
类激活图(CAM)有助于制定显着图,有助于解释深度神经网络的预测。基于梯度的方法通常比视力解释性的其他分支更快,并且独立于人类的指导。类似CAM的研究的性能取决于管理模型的层响应以及梯度的影响。典型的面向梯度的CAM研究依赖加权聚合来进行显着图估计,通过将梯度图投影到单权重值中,这可能导致过度的广义显着图。为了解决此问题,我们使用全球指导图来纠正显着性估计过程中加权聚合操作,在这种情况下,结果解释是相对干净的ER且特定于实例的。我们通过在特征图及其相应的梯度图之间执行元素乘法来获得全局引导图。为了验证我们的研究,我们将拟议的研究与八个不同的显着性可视化器进行了比较。此外,我们使用七个常用的评估指标进行定量比较。提出的方案比ImageNet,MS-Coco 14和Pascal VOC 2012数据集的测试图像取得了重大改进。
translated by 谷歌翻译
Reinforcement Learning (RL) is a popular machine learning paradigm where intelligent agents interact with the environment to fulfill a long-term goal. Driven by the resurgence of deep learning, Deep RL (DRL) has witnessed great success over a wide spectrum of complex control tasks. Despite the encouraging results achieved, the deep neural network-based backbone is widely deemed as a black box that impedes practitioners to trust and employ trained agents in realistic scenarios where high security and reliability are essential. To alleviate this issue, a large volume of literature devoted to shedding light on the inner workings of the intelligent agents has been proposed, by constructing intrinsic interpretability or post-hoc explainability. In this survey, we provide a comprehensive review of existing works on eXplainable RL (XRL) and introduce a new taxonomy where prior works are clearly categorized into model-explaining, reward-explaining, state-explaining, and task-explaining methods. We also review and highlight RL methods that conversely leverage human knowledge to promote learning efficiency and performance of agents while this kind of method is often ignored in XRL field. Some challenges and opportunities in XRL are discussed. This survey intends to provide a high-level summarization of XRL and to motivate future research on more effective XRL solutions. Corresponding open source codes are collected and categorized at https://github.com/Plankson/awesome-explainable-reinforcement-learning.
translated by 谷歌翻译
Black-Box AI模型的广泛使用增加了对解释这些模型做出决定的算法和方法的需求。近年来,AI研究界对模型的解释性越来越感兴趣,因为Black-Box模型接管了越来越复杂和具有挑战性的任务。考虑到深度学习技术在广泛应用中的主导地位,包括但不限于计算机视觉,解释性变得至关重要。在理解深度学习模型的推理过程的指导下,已经开发了许多为人工智能模型决策提供人类可理解证据的方法,因为绝大多数人都依靠他们的操作来访问这些模型的内部体系结构和参数(例如,神经网络的权重)。我们提出了一种模型 - 不足的方法,用于生成仅访问模型输出的显着性图,并且不需要其他信息,例如梯度。我们使用差分进化(DE)来确定哪些图像像素在模型的决策过程中最有影响力,并产生类激活图(CAM),其质量与使用模型特异性算法创建的CAM质量相当。 DE-CAM可以实现良好的性能,而无需以更高的计算复杂性来访问模型体系结构的内部细节。
translated by 谷歌翻译
Adequately assigning credit to actions for future outcomes based on their contributions is a long-standing open challenge in Reinforcement Learning. The assumptions of the most commonly used credit assignment method are disadvantageous in tasks where the effects of decisions are not immediately evident. Furthermore, this method can only evaluate actions that have been selected by the agent, making it highly inefficient. Still, no alternative methods have been widely adopted in the field. Hindsight Credit Assignment is a promising, but still unexplored candidate, which aims to solve the problems of both long-term and counterfactual credit assignment. In this thesis, we empirically investigate Hindsight Credit Assignment to identify its main benefits, and key points to improve. Then, we apply it to factored state representations, and in particular to state representations based on the causal structure of the environment. In this setting, we propose a variant of Hindsight Credit Assignment that effectively exploits a given causal structure. We show that our modification greatly decreases the workload of Hindsight Credit Assignment, making it more efficient and enabling it to outperform the baseline credit assignment method on various tasks. This opens the way to other methods based on given or learned causal structures.
translated by 谷歌翻译
Deep reinforcement learning is poised to revolutionise the field of AI and represents a step towards building autonomous systems with a higher level understanding of the visual world. Currently, deep learning is enabling reinforcement learning to scale to problems that were previously intractable, such as learning to play video games directly from pixels. Deep reinforcement learning algorithms are also applied to robotics, allowing control policies for robots to be learned directly from camera inputs in the real world. In this survey, we begin with an introduction to the general field of reinforcement learning, then progress to the main streams of value-based and policybased methods. Our survey will cover central algorithms in deep reinforcement learning, including the deep Q-network, trust region policy optimisation, and asynchronous advantage actor-critic. In parallel, we highlight the unique advantages of deep neural networks, focusing on visual understanding via reinforcement learning. To conclude, we describe several current areas of research within the field.
translated by 谷歌翻译
自2015年首次介绍以来,深入增强学习(DRL)方案的使用已大大增加。尽管在许多不同的应用中使用了使用,但他们仍然存在缺乏可解释性的问题。面包缺乏对研究人员和公众使用DRL解决方案的使用。为了解决这个问题,已经出现了可解释的人工智能(XAI)领域。这是各种不同的方法,它们希望打开DRL黑框,范围从使用可解释的符号决策树到诸如Shapley值之类的数值方法。这篇评论研究了使用哪些方法以及使用了哪些应用程序。这样做是为了确定哪些模型最适合每个应用程序,或者是否未充分利用方法。
translated by 谷歌翻译
我们提出了CX-TOM,简短于与理论的理论,一种新的可解释的AI(XAI)框架,用于解释深度卷积神经网络(CNN)制定的决定。与生成解释的XAI中的当前方法形成对比,我们将说明作为迭代通信过程,即对话框,机器和人类用户之间。更具体地说,我们的CX-TOM框架通过调解机器和人类用户的思想之间的差异,在对话中生成解释顺序。为此,我们使用思想理论(汤姆),帮助我们明确地建模人类的意图,通过人类的推断,通过机器推断出人类的思想。此外,大多数最先进的XAI框架提供了基于注意的(或热图)的解释。在我们的工作中,我们表明,这些注意力的解释不足以增加人类信任在潜在的CNN模型中。在CX-TOM中,我们使用命名为您定义的故障行的反事实解释:给定CNN分类模型M预测C_PRED的CNN分类模型M的输入图像I,错误线识别最小的语义级别特征(例如,斑马上的条纹,狗的耳朵),称为可解释的概念,需要从I添加或删除,以便将m的分类类别改变为另一个指定的c_alt。我们认为,由于CX-TOM解释的迭代,概念和反事本质,我们的框架对于专家和非专家用户来说是实用的,更加自然,以了解复杂的深度学习模式的内部运作。广泛的定量和定性实验验证了我们的假设,展示了我们的CX-TOM显着优于最先进的可解释的AI模型。
translated by 谷歌翻译
该属性方法通过识别和可视化占据网络输出的输入区域/像素来提供用于以可视化方式解释不透明神经网络的方向。关于视觉上解释视频理解网络的归因方法,由于视频输入中存在的独特的时空依赖性以及视频理解网络的特殊3D卷积或经常性结构,它具有具有挑战性。然而,大多数现有的归因方法专注于解释拍摄单个图像的网络作为输入,并且少量设计用于视频归属的作品来处理视频理解网络的多样化结构。在本文中,我们调查了与多样化视频理解网络兼容的基于通用扰动的归因方法。此外,我们提出了一种新的正则化术语来增强方法,通过限制其归属的平滑度导致空间和时间维度。为了评估不同视频归因方法的有效性而不依赖于手动判断,我们引入了通过新提出的可靠性测量检查的可靠的客观度量。我们通过主观和客观评估和与多种重要归因方法进行比较验证了我们的方法的有效性。
translated by 谷歌翻译