图形自动编码器在嵌入基于图的数据集方面有效。大多数图形自动编码器体系结构都具有较浅的深度,这些深度限制了它们捕获由多支架隔开的节点之间有意义关系的能力。在本文中,我们提出了残留的变分图自动编码器Resvgae,这是一种具有多个残差模块的深度变分图自动编码器模型。我们表明,我们的多个残差模块,具有残差连接的卷积层,提高了图自动编码器的平均精度。实验结果表明,与其他最先进的方法相比,我们提出的剩余模块的模型优于没有残留模块的模型,并获得了相似的结果。
translated by 谷歌翻译
图形神经网络已用于各种学习任务,例如链接预测,节点分类和节点群集。其中,链接预测是一项相对研究的图形学习任务,其当前最新模型基于浅层图自动编码器(GAE)体系结构的一层或两层。在本文中,我们专注于解决链接预测的当前方法的局限性,该预测只能使用浅的GAE和变分GAE,并创建有效的方法来加深(变异)GAE架构以实现稳定和竞争性的性能。我们提出的方法是创新的方法将标准自动编码器(AES)纳入GAE的体系结构,在该体系结构中,标准AE被利用以通过无缝整合邻接信息和节点来学习必要的,低维的表示,而GAE则进一步构建了多尺度的低规模的低尺度低尺度的低尺度。通过残差连接的维度表示,以学习紧凑的链接预测的整体嵌入。从经验上讲,在各种基准测试数据集上进行的广泛实验验证了我们方法的有效性,并证明了我们加深的图形模型以进行链接预测的竞争性能。从理论上讲,我们证明我们的深度扩展包括具有不同阶的多项式过滤器。
translated by 谷歌翻译
本文介绍了Wasserstein对外正规正规化的图形AutoEncoder(Warga),一种隐含的生成算法,直接通过Wassersein指标将节点潜入目标分布的节点潜行分布。所提出的方法已在实际图表中的链路预测和节点聚类的任务中验证,其中WARGA通常优于基于Kullback-Leibler(KL)发散和典型的对抗框架的最先进模型。
translated by 谷歌翻译
在本文中,我们提出了一个通用框架,以缩放图形自动编码器(AE)和图形自动编码器(VAE)。该框架利用图形退化概念仅从一个密集的节点子集训练模型,而不是使用整个图。加上一种简单而有效的传播机制,我们的方法可显着提高可扩展性和训练速度,同时保持性能。我们在现有图AE和VAE的几种变体上评估和讨论我们的方法,并将这些模型的首次应用于具有多达数百万个节点和边缘的大图。我们取得了经验竞争的结果W.R.T.几种流行的可扩展节点嵌入方法,这些方法强调了对更可扩展图AE和VAE进行进一步研究的相关性。
translated by 谷歌翻译
Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into four categories, namely recurrent graph neural networks, convolutional graph neural networks, graph autoencoders, and spatial-temporal graph neural networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes, benchmark data sets, and model evaluation of graph neural networks. Finally, we propose potential research directions in this rapidly growing field.
translated by 谷歌翻译
网络嵌入作为网络分析的有希望的研究领域出现。最近,通过将冗余还原原理应用于对应于图像样本的两个扭曲版本的嵌入向量,提出了一种名为Barlow双胞胎的方法。通过此激励,我们提出了Barlow Graph自动编码器,这是一个简单而有效的学习网络嵌入的架构。它旨在最大限度地提高节点的立即和较大邻域的嵌入向量之间的相似性,同时最小化这些投影的组件之间的冗余。此外,我们还介绍了名为Barlow变形图自动编码器的变型对应物。我们的方法产生了对归纳链路预测的有希望的结果,并且还涉及用于聚类和下游节点分类的领域,如广泛的三个基准引用数据集上的多种已知技术的广泛比较所证明的。
translated by 谷歌翻译
Clustering is a fundamental problem in network analysis that finds closely connected groups of nodes and separates them from other nodes in the graph, while link prediction is to predict whether two nodes in a network are likely to have a link. The definition of both naturally determines that clustering must play a positive role in obtaining accurate link prediction tasks. Yet researchers have long ignored or used inappropriate ways to undermine this positive relationship. In this article, We construct a simple but efficient clustering-driven link prediction framework(ClusterLP), with the goal of directly exploiting the cluster structures to obtain connections between nodes as accurately as possible in both undirected graphs and directed graphs. Specifically, we propose that it is easier to establish links between nodes with similar representation vectors and cluster tendencies in undirected graphs, while nodes in a directed graphs can more easily point to nodes similar to their representation vectors and have greater influence in their own cluster. We customized the implementation of ClusterLP for undirected and directed graphs, respectively, and the experimental results using multiple real-world networks on the link prediction task showed that our models is highly competitive with existing baseline models. The code implementation of ClusterLP and baselines we use are available at https://github.com/ZINUX1998/ClusterLP.
translated by 谷歌翻译
我们展示了拓扑转型等值表示学习,是图形数据节点表示的自我监督学习的一般范式,以实现图形卷积神经网络(GCNNS)的广泛适用性。通过在转换之前和之后的拓扑转换和节点表示之间的相互信息,从信息理论的角度来看,我们将提出的模型正式化。我们得出最大化这种相互信息可以放宽以最小化应用拓扑变换与节点表示之间的估计之间的跨熵。特别是,我们寻求从原始图表中采样节点对的子集,并在每对之间翻转边缘连接以改变图形拓扑。然后,我们通过从原始和变换图的特征表示重构拓扑转换来自动列出表示编码器以学习节点表示。在实验中,我们将所提出的模型应用于下游节点分类,图形分类和链路预测任务,结果表明,所提出的方法优于现有的无监督方法。
translated by 谷歌翻译
Graph AutoCododers(GAE)和变分图自动编码器(VGAE)作为链接预测的强大方法出现。他们的表现对社区探测问题的印象不那么令人印象深刻,根据最近和同意的实验评估,它们的表现通常超过了诸如louvain方法之类的简单替代方案。目前尚不清楚可以通过GAE和VGAE改善社区检测的程度,尤其是在没有节点功能的情况下。此外,不确定是否可以在链接预测上同时保留良好的性能。在本文中,我们表明,可以高精度地共同解决这两个任务。为此,我们介绍和理论上研究了一个社区保留的消息传递方案,通过在计算嵌入空间时考虑初始图形结构和基于模块化的先验社区来掺杂我们的GAE和VGAE编码器。我们还提出了新颖的培训和优化策略,包括引入一个模块化的正规器,以补充联合链路预测和社区检测的现有重建损失。我们通过对各种现实世界图的深入实验验证,证明了方法的经验有效性,称为模块化感知的GAE和VGAE。
translated by 谷歌翻译
Variational Graph Autoencoders (VGAEs) are powerful models for unsupervised learning of node representations from graph data. In this work, we systematically analyze modeling node attributes in VGAEs and show that attribute decoding is important for node representation learning. We further propose a new learning model, interpretable NOde Representation with Attribute Decoding (NORAD). The model encodes node representations in an interpretable approach: node representations capture community structures in the graph and the relationship between communities and node attributes. We further propose a rectifying procedure to refine node representations of isolated notes, improving the quality of these nodes' representations. Our empirical results demonstrate the advantage of the proposed model when learning graph data in an interpretable approach.
translated by 谷歌翻译
图理论分析已成为建模大脑功能和解剖连接性的标准工具。随着连接组学的出现,主要的图形或感兴趣的网络是结构连接组(源自DTI拖拉术)和功能连接组(源自静止状态fMRI)。但是,大多数已发表的连接组研究都集中在结构或功能连接上,但是在同一数据集中可用的情况下,它们之间的互补信息可以共同利用以提高我们对大脑的理解。为此,我们提出了一个功能约束的结构图变量自动编码器(FCS-GVAE),能够以无监督的方式合并功能和结构连接的信息。这导致了一个关节的低维嵌入,该嵌入建立了一个统一的空间坐标系,用于在不同受试者之间进行比较。我们使用公开可用的OASIS-3阿尔茨海默氏病(AD)数据集评估我们的方法,并表明为最佳编码功能性脑动力学而言,有必要的配方是必要的。此外,所提出的联合嵌入方法比不使用互补连接信息的方法更准确地区分不同的患者子选集。
translated by 谷歌翻译
Inferring missing links or detecting spurious ones based on observed graphs, known as link prediction, is a long-standing challenge in graph data analysis. With the recent advances in deep learning, graph neural networks have been used for link prediction and have achieved state-of-the-art performance. Nevertheless, existing methods developed for this purpose are typically discriminative, computing features of local subgraphs around two neighboring nodes and predicting potential links between them from the perspective of subgraph classification. In this formalism, the selection of enclosing subgraphs and heuristic structural features for subgraph classification significantly affects the performance of the methods. To overcome this limitation, this paper proposes a novel and radically different link prediction algorithm based on the network reconstruction theory, called GraphLP. Instead of sampling positive and negative links and heuristically computing the features of their enclosing subgraphs, GraphLP utilizes the feature learning ability of deep-learning models to automatically extract the structural patterns of graphs for link prediction under the assumption that real-world graphs are not locally isolated. Moreover, GraphLP explores high-order connectivity patterns to utilize the hierarchical organizational structures of graphs for link prediction. Our experimental results on all common benchmark datasets from different applications demonstrate that the proposed method consistently outperforms other state-of-the-art methods. Unlike the discriminative neural network models used for link prediction, GraphLP is generative, which provides a new paradigm for neural-network-based link prediction.
translated by 谷歌翻译
图形神经网络(GNN)已被广泛应用于各种领域,以通过图形结构数据学习。在各种任务(例如节点分类和图形分类)中,他们对传统启发式方法显示了显着改进。但是,由于GNN严重依赖于平滑的节点特征而不是图形结构,因此在链接预测中,它们通常比简单的启发式方法表现出差的性能,例如,结构信息(例如,重叠的社区,学位和最短路径)至关重要。为了解决这一限制,我们建议邻里重叠感知的图形神经网络(NEO-GNNS),这些神经网络(NEO-GNNS)从邻接矩阵中学习有用的结构特征,并估算了重叠的邻域以进行链接预测。我们的Neo-Gnns概括了基于社区重叠的启发式方法,并处理重叠的多跳社区。我们在开放图基准数据集(OGB)上进行的广泛实验表明,NEO-GNNS始终在链接预测中实现最新性能。我们的代码可在https://github.com/seongjunyun/neo_gnns上公开获取。
translated by 谷歌翻译
嵌入现实世界网络提出挑战,因为它不清楚如何识别其潜在的几何形状。嵌入了诸如无尺度网络的辅音网络,以欧几里德空间显示出造成的扭曲。将无缝的网络嵌入到双曲线空间提供令人兴奋的替代方案,但在将各种网络与潜在几何图中嵌入不同的几何形状时,扭曲的障碍。我们提出了一种归纳模型,可以利用GCNS和琐碎束的表现力来学习有或没有节点特征的网络的归纳节点表示。琐碎的束是一种简单的纤维束的情况,这是全球的空间,其基础空间和光纤的产品空间。基础空间和纤维的坐标可用于表达产生边缘的分类和抵消因子。因此,该模型能够学习可以表达这些因素的嵌入物。在实践中,与Euclidean和双曲线GCN相比,它会减少链路预测和节点分类的错误。
translated by 谷歌翻译
我们介绍了一种新颖的屏蔽图AutoEncoder(MGAE)框架,以在图形结构数据上执行有效的学习。从自我监督学习中欣识见,我们随机掩盖了大部分边缘,并在训练期间尝试重建这些缺失的边缘。 Mgae有两个核心设计。首先,我们发现掩蔽了输入图结构的高比率,例如70 \%$,产生一个非凡和有意义的自我监督任务,使下游应用程序受益。其次,我们使用图形神经网络(GNN)作为编码器,以在部分掩蔽的图表上执行消息传播。为了重建大量掩模边缘,提出了一种定制的互相关解码器。它可以捕获多粒度的锚边的头部和尾部节点之间的互相关。耦合这两种设计使MGAE能够有效且有效地培训。在多个开放数据集(Planetoid和OGB基准测试)上进行了广泛的实验,证明MGAE通常比链接预测和节点分类更好地表现优于最先进的无监督竞争对手。
translated by 谷歌翻译
Recently, graph neural networks (GNNs) have revolutionized the field of graph representation learning through effectively learned node embeddings, and achieved state-of-the-art results in tasks such as node classification and link prediction. However, current GNN methods are inherently flat and do not learn hierarchical representations of graphs-a limitation that is especially problematic for the task of graph classification, where the goal is to predict the label associated with an entire graph. Here we propose DIFFPOOL, a differentiable graph pooling module that can generate hierarchical representations of graphs and can be combined with various graph neural network architectures in an end-to-end fashion. DIFFPOOL learns a differentiable soft cluster assignment for nodes at each layer of a deep GNN, mapping nodes to a set of clusters, which then form the coarsened input for the next GNN layer. Our experimental results show that combining existing GNN methods with DIFFPOOL yields an average improvement of 5-10% accuracy on graph classification benchmarks, compared to all existing pooling approaches, achieving a new state-of-the-art on four out of five benchmark data sets.
translated by 谷歌翻译
Temporal networks are an important type of network whose topological structure changes over time. Compared with methods on static networks, temporal network embedding (TNE) methods are facing three challenges: 1) it cannot describe the temporal dependence across network snapshots; 2) the node embedding in the latent space fails to indicate changes in the network topology; and 3) it cannot avoid a lot of redundant computation via parameter inheritance on a series of snapshots. To this end, we propose a novel temporal network embedding method named Dynamic Cluster Structure Constraint model (DyCSC), whose core idea is to capture the evolution of temporal networks by imposing a temporal constraint on the tendency of the nodes in the network to a given number of clusters. It not only generates low-dimensional embedding vectors for nodes but also preserves the dynamic nonlinear features of temporal networks. Experimental results on multiple realworld datasets have demonstrated the superiority of DyCSC for temporal graph embedding, as it consistently outperforms competing methods by significant margins in multiple temporal link prediction tasks. Moreover, the ablation study further validates the effectiveness of the proposed temporal constraint.
translated by 谷歌翻译
在本文中,我们提出了多分辨率的等级图变分性Autiachoders(MGVAE),第一层级生成模型以多分辨率和等分的方式学习和生成图。在每个分辨率级别,MGVAE采用更高的顺序消息,以便在学习中对图进行编码,同时学习将其分配到互斥的集群中并赋予最终产生潜在分布的层次结构的较低分辨率。然后,MGVAE构造分层生成模型以改变地解码成粗糙的图形的层次。重要的是,我们提出的框架是关于节点排序的端到端排列等级。MGVAE通过多种生成任务实现竞争结果,包括一般图生成,分子产生,无监督的分子表示学习,以预测分子特性,引用图的链路预测,以及基于图的图像生成。
translated by 谷歌翻译
多模式的机器学习已被广​​泛研究以开发通用智能。最近,感知者和感知者IO出色的多模式算法对各种数据集域和任务显示了竞争结果。但是,最近的作品,感知者和感知者IO专注于异质模式,包括图像,文本和语音,并且对于图形结构化数据集的研究作品很少。图是最概括的数据集结构之一,我们可以代表其他数据集,包括图像,文本和语音作为图形结构化数据。图具有与其他数据集域(例如文本和图像)不同的邻接矩阵,并且处理拓扑信息,关系信息和规范的位置信息并不微不足道。在这项研究中,我们提供了图形感知器IO,即图形结构化数据集的感知器IO。我们将图形感知器IO的主要结构保留为感知器IO,因为除了图形结构化数据集外,感知器IO已经很好地处理了各种数据集。图形感知器IO是一种通用方法,它可以处理各种数据集,例如图形结构化数据以及文本和图像。比较图形神经网络,图感知器IO需要较低的复杂性,并且可以有效地合并局部和全局信息。我们表明,图形感知器IO显示了与图形相关任务的各种竞争结果,包括节点分类,图形分类和链接预测。
translated by 谷歌翻译
Most action recognition datasets and algorithms assume a closed world, where all test samples are instances of the known classes. In open set problems, test samples may be drawn from either known or unknown classes. Existing open set action recognition methods are typically based on extending closed set methods by adding post hoc analysis of classification scores or feature distances and do not capture the relations among all the video clip elements. Our approach uses the reconstruction error to determine the novelty of the video since unknown classes are harder to put back together and thus have a higher reconstruction error than videos from known classes. We refer to our solution to the open set action recognition problem as "Humpty Dumpty", due to its reconstruction abilities. Humpty Dumpty is a novel graph-based autoencoder that accounts for contextual and semantic relations among the clip pieces for improved reconstruction. A larger reconstruction error leads to an increased likelihood that the action can not be reconstructed, i.e., can not put Humpty Dumpty back together again, indicating that the action has never been seen before and is novel/unknown. Extensive experiments are performed on two publicly available action recognition datasets including HMDB-51 and UCF-101, showing the state-of-the-art performance for open set action recognition.
translated by 谷歌翻译