3D对象的点云具有固有的组成性质,可以将简单的部分组装成逐渐复杂的形状以形成整个对象。明确捕获这种部分整体层次结构是一个长期的目标,以建立有效的模型,但其树状的性质使这项任务变得难以捉摸。在本文中,我们建议将点云分类器的特征嵌入双曲线空间中,并明确规范空间以说明零件整体结构。双曲线空间是唯一可以成功嵌入层次结构的树状性质的空间。这导致了对点云分类的最先进的监督模型的性能的实质性改善。
translated by 谷歌翻译
Supervision for metric learning has long been given in the form of equivalence between human-labeled classes. Although this type of supervision has been a basis of metric learning for decades, we argue that it hinders further advances of the field. In this regard, we propose a new regularization method, dubbed HIER, to discover the latent semantic hierarchy of training data, and to deploy the hierarchy to provide richer and more fine-grained supervision than inter-class separability induced by common metric learning losses. HIER achieved this goal with no annotation for the semantic hierarchy but by learning hierarchical proxies in hyperbolic spaces. The hierarchical proxies are learnable parameters, and each of them is trained to serve as an ancestor of a group of data or other proxies to approximate the semantic hierarchy among them. HIER deals with the proxies along with data in hyperbolic space since geometric properties of the space are well-suited to represent their hierarchical structure. The efficacy of HIER was evaluated on four standard benchmarks, where it consistently improved performance of conventional methods when integrated with them, and consequently achieved the best records, surpassing even the existing hyperbolic metric learning technique, in almost all settings.
translated by 谷歌翻译
Although self-/un-supervised methods have led to rapid progress in visual representation learning, these methods generally treat objects and scenes using the same lens. In this paper, we focus on learning representations for objects and scenes that preserve the structure among them. Motivated by the observation that visually similar objects are close in the representation space, we argue that the scenes and objects should instead follow a hierarchical structure based on their compositionality. To exploit such a structure, we propose a contrastive learning framework where a Euclidean loss is used to learn object representations and a hyperbolic loss is used to encourage representations of scenes to lie close to representations of their constituent objects in a hyperbolic space. This novel hyperbolic objective encourages the scene-object hypernymy among the representations by optimizing the magnitude of their norms. We show that when pretraining on the COCO and OpenImages datasets, the hyperbolic loss improves downstream performance of several baselines across multiple datasets and tasks, including image classification, object detection, and semantic segmentation. We also show that the properties of the learned representations allow us to solve various vision tasks that involve the interaction between scenes and objects in a zero-shot fashion. Our code can be found at \url{https://github.com/shlokk/HCL/tree/main/HCL}.
translated by 谷歌翻译
Hyperbolic space is emerging as a promising learning space for representation learning, owning to its exponential growth volume. Compared with the flat Euclidean space, the curved hyperbolic space is far more ambient and embeddable, particularly for datasets with implicit tree-like architectures, such as hierarchies and power-law distributions. On the other hand, the structure of a real-world network is usually intricate, with some regions being tree-like, some being flat, and others being circular. Directly embedding heterogeneous structural networks into a homogeneous embedding space unavoidably brings inductive biases and distortions. Inspiringly, the discrete curvature can well describe the local structure of a node and its surroundings, which motivates us to investigate the information conveyed by the network topology explicitly in improving geometric learning. To this end, we explore the properties of the local discrete curvature of graph topology and the continuous global curvature of embedding space. Besides, a Hyperbolic Curvature-aware Graph Neural Network, HCGNN, is further proposed. In particular, HCGNN utilizes the discrete curvature to lead message passing of the surroundings and adaptively adjust the continuous curvature simultaneously. Extensive experiments on node classification and link prediction tasks show that the proposed method outperforms various competitive models by a large margin in both high and low hyperbolic graph data. Case studies further illustrate the efficacy of discrete curvature in finding local clusters and alleviating the distortion caused by hyperbolic geometry.
translated by 谷歌翻译
双曲线神经网络由于对几个图形问题的有希望的结果,包括节点分类和链接预测,因此最近引起了极大的关注。取得成功的主要原因是双曲空间在捕获图数据集的固有层次结构方面的有效性。但是,在非层次数据集方面,它们在概括,可伸缩性方面受到限制。在本文中,我们对双曲线网络进行了完全正交的观点。我们使用Poincar \'e磁盘对双曲线几何形状进行建模,并将其视为磁盘本身是原始的切线空间。这使我们能够用欧几里院近似替代非尺度的M \“ Obius Gyrovector操作,因此将整个双曲线模型简化为具有双曲线归一化功能的欧几里得模型。它仍然在Riemannian歧管中起作用,因此我们称其为伪poincar \'e框架。我们将非线性双曲线归一化应用于当前的最新均质和多关系图网络,与欧几里得和双曲线对应物相比,性能的显着改善。这项工作的主要影响在于其在欧几里得空间中捕获层次特征的能力,因此可以替代双曲线网络而不会损失性能指标,同时利用欧几里得网络的功能,例如可解释性和有效执行各种模型组件。
translated by 谷歌翻译
Graph convolutional networks (GCNs) are powerful frameworks for learning embeddings of graph-structured data. GCNs are traditionally studied through the lens of Euclidean geometry. Recent works find that non-Euclidean Riemannian manifolds provide specific inductive biases for embedding hierarchical or spherical data. However, they cannot align well with data of mixed graph topologies. We consider a larger class of pseudo-Riemannian manifolds that generalize hyperboloid and sphere. We develop new geodesic tools that allow for extending neural network operations into geodesically disconnected pseudo-Riemannian manifolds. As a consequence, we derive a pseudo-Riemannian GCN that models data in pseudo-Riemannian manifolds of constant nonzero curvature in the context of graph neural networks. Our method provides a geometric inductive bias that is sufficiently flexible to model mixed heterogeneous topologies like hierarchical graphs with cycles. We demonstrate the representational capabilities of this method by applying it to the tasks of graph reconstruction, node classification and link prediction on a series of standard graphs with mixed topologies. Empirical results demonstrate that our method outperforms Riemannian counterparts when embedding graphs of complex topologies.
translated by 谷歌翻译
Hierarchical semantic structures, naturally existing in real-world datasets, can assist in capturing the latent distribution of data to learn robust hash codes for retrieval systems. Although hierarchical semantic structures can be simply expressed by integrating semantically relevant data into a high-level taxon with coarser-grained semantics, the construction, embedding, and exploitation of the structures remain tricky for unsupervised hash learning. To tackle these problems, we propose a novel unsupervised hashing method named Hyperbolic Hierarchical Contrastive Hashing (HHCH). We propose to embed continuous hash codes into hyperbolic space for accurate semantic expression since embedding hierarchies in hyperbolic space generates less distortion than in hyper-sphere space and Euclidean space. In addition, we extend the K-Means algorithm to hyperbolic space and perform the proposed hierarchical hyperbolic K-Means algorithm to construct hierarchical semantic structures adaptively. To exploit the hierarchical semantic structures in hyperbolic space, we designed the hierarchical contrastive learning algorithm, including hierarchical instance-wise and hierarchical prototype-wise contrastive learning. Extensive experiments on four benchmark datasets demonstrate that the proposed method outperforms the state-of-the-art unsupervised hashing methods. Codes will be released.
translated by 谷歌翻译
知识图(kg)嵌入在实体的学习表示和链接预测任务的关系方面表现出很大的力量。以前的工作通常将KG嵌入到单个几何空间中,例如欧几里得空间(零弯曲),双曲空间(负弯曲)或超透明空间(积极弯曲),以维持其特定的几何结构(例如,链,层次结构和环形结构)。但是,KGS的拓扑结构似乎很复杂,因为它可能同时包含多种类型的几何结构。因此,将kg嵌入单个空间中,无论欧几里得空间,双曲线空间或透明空间,都无法准确捕获KGS的复杂结构。为了克服这一挑战,我们提出了几何相互作用知识图嵌入(GIE),该图形嵌入了,该图形在欧几里得,双曲线和超级空间之间进行了交互学习的空间结构。从理论上讲,我们提出的GIE可以捕获一组更丰富的关系信息,模型键推理模式,并启用跨实体的表达语义匹配。三个完善的知识图完成基准的实验结果表明,我们的GIE以更少的参数实现了最先进的性能。
translated by 谷歌翻译
在异质图上的自我监督学习(尤其是对比度学习)方法可以有效地摆脱对监督数据的依赖。同时,大多数现有的表示学习方法将异质图嵌入到欧几里得或双曲线的单个几何空间中。这种单个几何视图通常不足以观察由于其丰富的语义和复杂结构而观察到异质图的完整图片。在这些观察结果下,本文提出了一种新型的自我监督学习方法,称为几何对比度学习(GCL),以更好地表示监督数据是不可用时的异质图。 GCL同时观察了从欧几里得和双曲线观点的异质图,旨在强烈合并建模丰富的语义和复杂结构的能力,这有望为下游任务带来更多好处。 GCL通过在局部局部和局部全球语义水平上对比表示两种几何视图之间的相互信息。在四个基准数据集上进行的广泛实验表明,在三个任务上,所提出的方法在包括节点分类,节点群集和相似性搜索在内的三个任务上都超过了强基础,包括无监督的方法和监督方法。
translated by 谷歌翻译
在时间图上的表示学习吸引了大量的研究注意力,因为它在各种各样的现实应用程序中的基本重要性。尽管许多研究成功地获得了时间依赖的表示,但它仍然面临重大挑战。一方面,大多数现有方法都以一定的曲率限制了嵌入空间。然而,实际上,潜在的几何形状随着时间的推移而变化的曲率超球,零曲率欧几里得和负曲率双曲空间发生了变化。另一方面,这些方法通常需要丰富的标签来学习时间表示,从而明显限制了它们在真实应用程序的未标记图中的广泛使用。为了弥合这一差距,我们首次尝试研究一般的Riemannian空间中自我监督的时间图表示学习的问题,从而支持随时间变化的曲率在超球,欧几里得和双曲线空间之间转移。在本文中,我们提出了一种新颖的自我监督的Riemannian图神经网络(SEXTRGNN)。具体而言,我们设计了具有理论上的时间编码的曲率变化的Riemannian GNN,并随着时间的推移制定功能性曲率,以模拟正,零和负曲率空间之间的演变转换。为了启用自我监督的学习,我们提出了一种新颖的重新处理自我对比的方法,探索Riemannian空间本身而无需增强,并提出了一种基于边缘的自我监督的曲率学习,并使用RICCI曲率进行。广泛的实验表明了SelfRGNN的优越性,此外,案例研究表明了现实中时间图的时变曲率。
translated by 谷歌翻译
图表表示学习近年来收到了增加的注意。大多数现有方法忽略了图形结构的复杂性,并限制了单个恒定曲率表示空间中的图形,这仅适用于特定类型的图形结构。此外,这些方法遵循监督或半监督的学习范例,从而显着限制其在实际应用中的未标记图中的部署。为了解决这些上述限制,我们首次尝试研究混合曲率空间中的自我监督的图表表示学习。在本文中,我们提出了一种新颖的自我监督的混合曲率图神经网络(SelfMGNN)。我们不是在一个单一的恒定曲率空间上工作,我们通过多个riemannian组件空间的笛卡尔乘积构建混合曲率空间,并设计分层注意机制,用于学习和融合这些组件空间的表示。为了实现自我超标学习,我们提出了一种新的双重对比方法。混合曲率的黎曼空间实际上为对比学习提供了多个黎曼观点。我们介绍了一个riemananian投影机来揭示这些观点,并利用精心设计的riemananian判别者,以便在里莫安尼亚视图中单独和跨越对比学习。最后,广泛的实验表明SelfMGNN捕获了现实中的复杂图形结构,优于最先进的基线。
translated by 谷歌翻译
Knowledge graph embedding (KGE) is a increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.
translated by 谷歌翻译
\ emph {black-box}模型的说明有助于我们了解模型决策,并提供有关模型偏见和不一致之处的信息。当前的大多数解释性技术通常就特征重要性得分或输入空间中的特征注意图提供了单一的解释。我们的重点是从细粒度到完全抽象的解释中解释\ emph {多个级别的抽象}处的深层歧视模型。我们通过使用\ emph {双曲几何}的自然特性来更有效地对符号特征的层次结构进行建模,并生成\ emph {层次结构符号规则}作为解释的一部分。具体而言,对于任何给定的深层歧视模型,我们通过使用矢量定量对连续的潜在空间的离散化来提炼基础知识,以形成符号,然后是\ emph {双曲线推理块},以诱导\ emph {抽象{抽象树}。我们遍历树以根据符号规则及其相应的视觉语义提取解释。我们证明了我们方法对MNIST和AFHQ高分辨率动物面孔数据集的有效性。我们的框架可在\ url {https://github.com/koriavinash1/symbolicinterpretability}中获得。
translated by 谷歌翻译
3D点云的卷积经过广泛研究,但在几何深度学习中却远非完美。卷积的传统智慧在3D点之间表现出特征对应关系,这是对差的独特特征学习的内在限制。在本文中,我们提出了自适应图卷积(AGCONV),以供点云分析的广泛应用。 AGCONV根据其动态学习的功能生成自适应核。与使用固定/各向同性核的解决方案相比,AGCONV提高了点云卷积的灵活性,有效,精确地捕获了不同语义部位的点之间的不同关系。与流行的注意力体重方案不同,AGCONV实现了卷积操作内部的适应性,而不是简单地将不同的权重分配给相邻点。广泛的评估清楚地表明,我们的方法优于各种基准数据集中的点云分类和分割的最新方法。同时,AGCONV可以灵活地采用更多的点云分析方法来提高其性能。为了验证其灵活性和有效性,我们探索了基于AGCONV的完成,DeNoing,Upsmpling,注册和圆圈提取的范式,它们与竞争对手相当甚至优越。我们的代码可在https://github.com/hrzhou2/adaptconv-master上找到。
translated by 谷歌翻译
双曲线空间可以连续嵌入分层结构。双曲神经网络(HNNS)通过将欧几里德特征提升到用于分类的双曲线空间来利用这种代表性,优于具有已知分层结构的数据集上的欧几里德神经网络(ENNS)。但是,HNNS低于标准基准测试,具有不明确的层次结构,极大地限制了HNNS的实际适用性。我们的主要洞察力是,由于将欧几里德特征连接到双曲线分类器的混合架构引起,HNNS对渐变较差的较差的普通分类性能。我们通过简单地在训练HNN时简单地剪切欧几里德特征幅度来提出有效的解决方案。我们的实验结果表明,剪辑的HNNS成为超级双曲分类器:它们不仅始终如一地优于位于分层数据上的HNN,而且在MNIST,CIFAR10,CIFAR100和ImageNet基准上与ENN一起举行,具有更好的对抗鲁棒性和分销外检测。
translated by 谷歌翻译
实际上,许多医疗数据集在疾病标签空间上定义了基本的分类学。但是,现有的医学诊断分类算法通常假定具有语义独立的标签。在这项研究中,我们旨在利用深度学习算法来利用类层次结构,以更准确,可靠的皮肤病变识别。我们提出了一个双曲线网络,以共同学习图像嵌入和类原型。事实证明,双曲线为与欧几里得几何形状更好地建模层次关系提供了一个空间。同时,我们使用从类层次结构编码的距离矩阵限制双曲线原型的分布。因此,学习的原型保留了嵌入空间中的语义类关系,我们可以通过将图像特征分配给最近的双曲线类原型来预测图像的标签。我们使用内部皮肤病变数据集,该数据集由65种皮肤疾病的大约230k皮肤镜图像组成,以验证我们的方法。广泛的实验提供了证据表明,与模型相比,我们的模型可以实现更高的准确性,而在不考虑班级关系的情况下可以实现更高的严重分类错误。
translated by 谷歌翻译
In recent years, graph neural networks (GNNs) have emerged as a promising tool for solving machine learning problems on graphs. Most GNNs are members of the family of message passing neural networks (MPNNs). There is a close connection between these models and the Weisfeiler-Leman (WL) test of isomorphism, an algorithm that can successfully test isomorphism for a broad class of graphs. Recently, much research has focused on measuring the expressive power of GNNs. For instance, it has been shown that standard MPNNs are at most as powerful as WL in terms of distinguishing non-isomorphic graphs. However, these studies have largely ignored the distances between the representations of nodes/graphs which are of paramount importance for learning tasks. In this paper, we define a distance function between nodes which is based on the hierarchy produced by the WL algorithm, and propose a model that learns representations which preserve those distances between nodes. Since the emerging hierarchy corresponds to a tree, to learn these representations, we capitalize on recent advances in the field of hyperbolic neural networks. We empirically evaluate the proposed model on standard node and graph classification datasets where it achieves competitive performance with state-of-the-art models.
translated by 谷歌翻译
自然语言数据表现出类似的树形层次结构,例如Wordnet中的复义 - 虚幻关系。FastText,作为基于欧几里德空间中的浅神经网络的最先进的文本分类器,可能无法精确地模拟这些层次结构,这些层次结构具有有限的表示容量。考虑到双曲线空间自然适合建模树状分层数据,我们提出了一个名为超文本的新模型,以通过赋予双曲线几何来赋予快速文本的高效文本分类。凭经验,我们显示超文本优于一系列文本分类任务的快速文本,参数大大减少。
translated by 谷歌翻译
两视图知识图(kgs)共同表示两个组成部分:抽象和常识概念的本体论观点,以及针对本体论概念实例化的特定实体的实例视图。因此,这些kg包含来自实例视图的本体学和周期性的分层的异质结构。尽管KG中有这些不同的结构,但最新的嵌入KG的作品假设整个KG仅属于两个观点之一,但并非同时属于。对于寻求将KG视为两种视图的作品,假定实例和本体论的观点属于相同的几何空间,例如所有嵌入在同一欧几里得空间中的节点或非欧盟产品空间,不再是合理的。对于两视图kg,图表的不同部分显示出不同的结构。为了解决这个问题,我们定义并构建了一个双几何空间嵌入模型(DGS),该模型通过将KG的不同部分嵌入不同的几何空间中,该模型使用复杂的非欧盟几何几何空间进行对两视图KGS进行建模。 DGS利用球形空间,双曲线空间及其在统一框架中学习嵌入的框架中的相交空间。此外,对于球形空间,我们提出了直接在球形空间中运行的新型封闭的球形空间操作员,而无需映射到近似切线空间。公共数据集上的实验表明,DGS在KG完成任务上的先前最先进的基线模型明显优于先前的基线模型,这表明了其在KGS中更好地建模异质结构的能力。
translated by 谷歌翻译
The choice of geometric space for knowledge graph (KG) embeddings can have significant effects on the performance of KG completion tasks. The hyperbolic geometry has been shown to capture the hierarchical patterns due to its tree-like metrics, which addressed the limitations of the Euclidean embedding models. Recent explorations of the complex hyperbolic geometry further improved the hyperbolic embeddings for capturing a variety of hierarchical structures. However, the performance of the hyperbolic KG embedding models for non-transitive relations is still unpromising, while the complex hyperbolic embeddings do not deal with multi-relations. This paper aims to utilize the representation capacity of the complex hyperbolic geometry in multi-relational KG embeddings. To apply the geometric transformations which account for different relations and the attention mechanism in the complex hyperbolic space, we propose to use the fast Fourier transform (FFT) as the conversion between the real and complex hyperbolic space. Constructing the attention-based transformations in the complex space is very challenging, while the proposed Fourier transform-based complex hyperbolic approaches provide a simple and effective solution. Experimental results show that our methods outperform the baselines, including the Euclidean and the real hyperbolic embedding models.
translated by 谷歌翻译