最近已经提出了用于查找测试时间决定的有影响力的训练示例的基于实例的可解释方法,包括影响函数,Tracein,代表点选择,渐变点和毕业-CO。通常,这些方法使用LOO影响(厨师距离)作为金标准,或使用各种启发式来评估。在本文中,我们表明,所有上述方法都不是不稳定的,即对初始化,训练数据的排序非常敏感,以及批量大小。我们建议这是文学中如何的自然后果,假设示例的影响与模型状态和其他示例无关 - 并且争论不是。我们表明LOO影响力和启发式是衡量基于实例的解释的质量的糟糕的指标,而是通过他们检测中毒攻击的能力来评估这些解释。此外,我们提供了一种简单但有效的基线,以改善所有上述方法,并展示如何在下游任务上产生非常显着的改进。
translated by 谷歌翻译
Good models require good training data. For overparameterized deep models, the causal relationship between training data and model predictions is increasingly opaque and poorly understood. Influence analysis partially demystifies training's underlying interactions by quantifying the amount each training instance alters the final model. Measuring the training data's influence exactly can be provably hard in the worst case; this has led to the development and use of influence estimators, which only approximate the true influence. This paper provides the first comprehensive survey of training data influence analysis and estimation. We begin by formalizing the various, and in places orthogonal, definitions of training data influence. We then organize state-of-the-art influence analysis methods into a taxonomy; we describe each of these methods in detail and compare their underlying assumptions, asymptotic complexities, and overall strengths and weaknesses. Finally, we propose future research directions to make influence analysis more useful in practice as well as more theoretically and empirically sound. A curated, up-to-date list of resources related to influence analysis is available at https://github.com/ZaydH/influence_analysis_papers.
translated by 谷歌翻译
影响功能有效地估计了删除单个训练数据点对模型学习参数的影响。尽管影响估计值与线性模型的剩余重新进行了良好的重新对齐,但最近的作品表明,在神经网络中,这种比对通常很差。在这项工作中,我们通过将其分解为五个单独的术语来研究导致这种差异的特定因素。我们研究每个术语对各种架构和数据集的贡献,以及它们如何随网络宽度和培训时间等因素而变化。尽管实际影响函数估计值可能是非线性网络中保留对方的重新培训的差异,但我们表明它们通常是对不同对象的良好近似值,我们称其为近端Bregman响应函数(PBRF)。由于PBRF仍然可以用来回答许多激励影响功能的问题,例如识别有影响力或标记的示例,因此我们的结果表明,影响功能估计的当前算法比以前的错误分析所暗示的更有用的结果。
translated by 谷歌翻译
Explainability has been widely stated as a cornerstone of the responsible and trustworthy use of machine learning models. With the ubiquitous use of Deep Neural Network (DNN) models expanding to risk-sensitive and safety-critical domains, many methods have been proposed to explain the decisions of these models. Recent years have also seen concerted efforts that have shown how such explanations can be distorted (attacked) by minor input perturbations. While there have been many surveys that review explainability methods themselves, there has been no effort hitherto to assimilate the different methods and metrics proposed to study the robustness of explanations of DNN models. In this work, we present a comprehensive survey of methods that study, understand, attack, and defend explanations of DNN models. We also present a detailed review of different metrics used to evaluate explanation methods, as well as describe attributional attack and defense methods. We conclude with lessons and take-aways for the community towards ensuring robust explanations of DNN model predictions.
translated by 谷歌翻译
最近证明,接受SGD训练的神经网络优先依赖线性预测的特征,并且可以忽略复杂的,同样可预测的功能。这种简单性偏见可以解释他们缺乏分布(OOD)的鲁棒性。学习任务越复杂,统计工件(即选择偏见,虚假相关性)的可能性就越大比学习的机制更简单。我们证明可以减轻简单性偏差并改善了OOD的概括。我们使用对其输入梯度对齐的惩罚来训练一组类似的模型以不同的方式拟合数据。我们从理论和经验上展示了这会导致学习更复杂的预测模式的学习。 OOD的概括从根本上需要超出I.I.D.示例,例如多个培训环境,反事实示例或其他侧面信息。我们的方法表明,我们可以将此要求推迟到独立的模型选择阶段。我们获得了SOTA的结果,可以在视觉域偏置数据和概括方面进行视觉识别。该方法 - 第一个逃避简单性偏见的方法 - 突出了需要更好地理解和控制深度学习中的归纳偏见。
translated by 谷歌翻译
我们开发了一种新的原则性算法,用于估计培训数据点对深度学习模型的行为的贡献,例如它做出的特定预测。我们的算法估计了AME,该数量量衡量了将数据点添加到训练数据子集中的预期(平均)边际效应,并从给定的分布中采样。当从均匀分布中采样子集时,AME将还原为众所周知的Shapley值。我们的方法受因果推断和随机实验的启发:我们采样了训练数据的不同子集以训练多个子模型,并评估每个子模型的行为。然后,我们使用套索回归来基于子集组成共同估计每个数据点的AME。在稀疏假设($ k \ ll n $数据点具有较大的AME)下,我们的估计器仅需要$ O(k \ log n)$随机的子模型培训,从而改善了最佳先前的Shapley值估算器。
translated by 谷歌翻译
用于训练机器学习(ML)模型的数据可能是敏感的。成员推理攻击(MIS),试图确定特定数据记录是否用于培训ML模型,违反会员隐私。 ML模型建设者需要一个原则的定义,使他们能够有效地定量(a)单独培训数据记录,(b)的隐私风险,有效地。未在会员资格危险风险指标上均未达到所有这些标准。我们提出了这种公制,SHAPR,它通过抑制其对模型的实用程序的影响来量化朔芙值以量化模型的记忆。这个记忆是衡量成功MIA的可能性的衡量标准。使用十个基准数据集,我们显示ShapR是有效的(精确度:0.94 $ \ PM 0.06 $,回忆:0.88 $ \ PM 0.06 $)在估算MIAS的培训数据记录的易感性时,高效(可在几分钟内计算,较小数据集和最大数据集的约〜90分钟)。 ShapR也是多功能的,因为它可以用于评估数据集的子集的公平或分配估值的其他目的。例如,我们显示Shapr正确地捕获不同子组的不成比例漏洞到MIS。使用SHAPR,我们表明,通过去除高风险训练数据记录,不一定改善数据集的成员隐私风险,从而确认在显着扩展的设置中从事工作(在十个数据集中,最多可删除50%的数据)的观察。
translated by 谷歌翻译
有针对性的训练集攻击将恶意实例注入训练集中,以导致训练有素的模型错误地标记一个或多个特定的测试实例。这项工作提出了目标识别的任务,该任务决定了特定的测试实例是否是训练集攻击的目标。目标识别可以与对抗性识别相结合,以查找(并删除)攻击实例,从而减轻对其他预测的影响,从而减轻攻击。我们没有专注于单个攻击方法或数据模式,而是基于影响力估计,这量化了每个培训实例对模型预测的贡献。我们表明,现有的影响估计量的不良实际表现通常来自于他们对训练实例和迭代次数的过度依赖。我们重新归一化的影响估计器解决了这一弱点。他们的表现远远超过了原始估计量,可以在对抗和非对抗环境中识别有影响力的训练示例群体,甚至发现多达100%的对抗训练实例,没有清洁数据误报。然后,目标识别简化以检测具有异常影响值的测试实例。我们证明了我们的方法对各种数据域的后门和中毒攻击的有效性,包括文本,视觉和语音,以及针对灰色盒子的自适应攻击者,该攻击者专门优化了逃避我们方法的对抗性实例。我们的源代码可在https://github.com/zaydh/target_indistification中找到。
translated by 谷歌翻译
会员推理(MI)攻击突出了当前神经网络随机培训方法中的隐私弱点。然而,它为什么出现。它们仅是不完美概括的自然结果吗?在培训期间,我们应该解决哪些根本原因以减轻这些攻击?为了回答此类问题,我们提出了第一种解释MI攻击及其基于原则性因果推理的概括的方法。我们提供因果图,以定量地解释以$ 6 $攻击变体获得的观察到的MI攻击性能。我们驳斥了几种先前的非量化假设,这些假设过于简化或过度估计潜在原因的影响,从而未能捕获几个因素之间的复杂相互作用。我们的因果模型还通过共同的因果因素显示了概括和MI攻击之间的新联系。我们的因果模型具有很高的预测能力($ 0.90 $),即它们的分析预测与经常看不见的实验中的观察结果相匹配,这使得通过它们的分析成为务实的替代方案。
translated by 谷歌翻译
最近的工作表明,培训的型号训练在相同的目标,并实现了对一致的测试数据的类似准确度的措施,尽管如此,仍可能对个体预测中的表现非常不同。这种不一致在高赌注环境中是不可取的,例如医学诊断和金融。我们表明,这种不一致的行为超出了对特征归因的预测,这同样对模型的可懂度具有负面影响,以及一个能够找到对象的追索权的能力。然后,我们将通过应用假设测试对使用随机选择的起始条件训练的一组模型的预测来减轻这些不一致的选择性合并来减轻这种不一致;重要的是,选择性集合可以在无法实现一致结果无法实现指定的置信水平的情况下弃权。我们证明了选择性集合之间的预测分歧是有界的,并且经验证明了选择性集合在保持低弃权率的同时实现一致的预测和特征归因。在几个基准数据集中,选择性集合达到零不一致预测点,额外的速率低1.5%。
translated by 谷歌翻译
可解释的人工智能(XAI)方法旨在帮助人类用户更好地了解AI代理的决策。但是,许多现代的XAI方法对最终用户,尤其是那些没有先前AI或ML知识的用户都不纯粹。在本文中,我们提出了一种新颖的XAI方法,我们称为责任,标识了特定决定的最负责任的培训示例。然后可以将此示例显示为一个解释:“这是我(AI)学到的使我做到的。”我们介绍了许多领域的实验结果,以及亚马逊机械Turk用户研究的结果,比较了责任和图像分类任务上的现有XAI方法。我们的结果表明,责任可以帮助提高人类最终用户和次要ML模型的准确性。
translated by 谷歌翻译
The behaviors of deep neural networks (DNNs) are notoriously resistant to human interpretations. In this paper, we propose Hypergradient Data Relevance Analysis, or HYDRA, which interprets the predictions made by DNNs as effects of their training data. Existing approaches generally estimate data contributions around the final model parameters and ignore how the training data shape the optimization trajectory. By unrolling the hypergradient of test loss w.r.t. the weights of training data, HYDRA assesses the contribution of training data toward test data points throughout the training trajectory. In order to accelerate computation, we remove the Hessian from the calculation and prove that, under moderate conditions, the approximation error is bounded. Corroborating this theoretical claim, empirical results indicate the error is indeed small. In addition, we quantitatively demonstrate that HYDRA outperforms influence functions in accurately estimating data contribution and detecting noisy data labels. The source code is available at https://github.com/cyyever/aaai_hydra_8686.
translated by 谷歌翻译
How can we explain the predictions of a blackbox model? In this paper, we use influence functions -a classic technique from robust statistics -to trace a model's prediction through the learning algorithm and back to its training data, thereby identifying training points most responsible for a given prediction. To scale up influence functions to modern machine learning settings, we develop a simple, efficient implementation that requires only oracle access to gradients and Hessian-vector products. We show that even on non-convex and non-differentiable models where the theory breaks down, approximations to influence functions can still provide valuable information. On linear models and convolutional neural networks, we demonstrate that influence functions are useful for multiple purposes: understanding model behavior, debugging models, detecting dataset errors, and even creating visuallyindistinguishable training-set attacks.
translated by 谷歌翻译
从外界培训的机器学习模型可能会被数据中毒攻击损坏,将恶意指向到模型的培训集中。对这些攻击的常见防御是数据消毒:在培训模型之前首先过滤出异常培训点。在本文中,我们开发了三次攻击,可以绕过广泛的常见数据消毒防御,包括基于最近邻居,训练损失和奇异值分解的异常探测器。通过增加3%的中毒数据,我们的攻击成功地将Enron垃圾邮件检测数据集的测试错误从3%增加到24%,并且IMDB情绪分类数据集从12%到29%。相比之下,没有明确占据这些数据消毒防御的现有攻击被他们击败。我们的攻击基于两个想法:(i)我们协调我们的攻击将中毒点彼此放置在彼此附近,(ii)我们将每个攻击制定为受限制的优化问题,限制旨在确保中毒点逃避检测。随着这种优化涉及解决昂贵的Bilevel问题,我们的三个攻击对应于基于影响功能的近似近似这个问题的方式; minimax二元性;和karush-kuhn-tucker(kkt)条件。我们的结果强调了对数据中毒攻击产生更强大的防御的必要性。
translated by 谷歌翻译
从机器学习模型中删除指定的培训数据子集的影响可能需要解决隐私,公平和数据质量等问题。删除子集后剩余数据从头开始对模型进行重新审查是有效但通常是不可行的,因为其计算费用。因此,在过去的几年中,已经看到了几种有效拆除的新方法,形成了“机器学习”领域,但是,到目前为止,出版的文献的许多方面都是不同的,缺乏共识。在本文中,我们总结并比较了七个最先进的机器学习算法,合并对现场中使用的核心概念的定义,调和不同的方法来评估算法,并讨论与在实践中应用机器相关的问题。
translated by 谷歌翻译
Support Vector Machines have been successfully used for one-class classification (OCSVM, SVDD) when trained on clean data, but they work much worse on dirty data: outliers present in the training data tend to become support vectors, and are hence considered "normal". In this article, we improve the effectiveness to detect outliers in dirty training data with a leave-out strategy: by temporarily omitting one candidate at a time, this point can be judged using the remaining data only. We show that this is more effective at scoring the outlierness of points than using the slack term of existing SVM-based approaches. Identified outliers can then be removed from the data, such that outliers hidden by other outliers can be identified, to reduce the problem of masking. Naively, this approach would require training N individual SVMs (and training $O(N^2)$ SVMs when iteratively removing the worst outliers one at a time), which is prohibitively expensive. We will discuss that only support vectors need to be considered in each step and that by reusing SVM parameters and weights, this incremental retraining can be accelerated substantially. By removing candidates in batches, we can further improve the processing time, although it obviously remains more costly than training a single SVM.
translated by 谷歌翻译
Explainability has become a central requirement for the development, deployment, and adoption of machine learning (ML) models and we are yet to understand what explanation methods can and cannot do. Several factors such as data, model prediction, hyperparameters used in training the model, and random initialization can all influence downstream explanations. While previous work empirically hinted that explanations (E) may have little relationship with the prediction (Y), there is a lack of conclusive study to quantify this relationship. Our work borrows tools from causal inference to systematically assay this relationship. More specifically, we measure the relationship between E and Y by measuring the treatment effect when intervening on their causal ancestors (hyperparameters) (inputs to generate saliency-based Es or Ys). We discover that Y's relative direct influence on E follows an odd pattern; the influence is higher in the lowest-performing models than in mid-performing models, and it then decreases in the top-performing models. We believe our work is a promising first step towards providing better guidance for practitioners who can make more informed decisions in utilizing these explanations by knowing what factors are at play and how they relate to their end task.
translated by 谷歌翻译
识别有影响力的培训示例的能力使我们能够调试培训数据并解释模型行为。现有的技术是基于通过模型参数来影响训练数据影响的。对于NLP应用中的大型模型,在所有模型参数中研究此流程通常是不可行的,因此技术通常选择重量的最后一层。但是,我们观察到,由于激活连接到最后一层的权重包含``共享逻辑'',因此通过最后一层权重计算的数据容易``取消效应'',其中不同示例的数据影响不同的示例的数据影响彼此相矛盾的大级级。取消效应降低了影响评分的歧视力,并且根据此措施删除有影响力的例子通常不会太多改变模型的行为。为了减轻这种情况,我们提出了一种称为Tracin的技术,我们可以修改一种称为Tracin的方法,可以在嵌入层而不是最后一层中进行操作,在该层中,取消效果不太严重。一个潜在的问题是,基于单词嵌入层的影响可能无法编码足够的高级信息。但是,我们发现梯度(与嵌入不同)不会遭受这一影响,这可能是因为它们通过较高的层链。我们表明,在三个语言分类任务上,在案例删除评估上,Tracin-We明显优于4-10在上一层上应用的其他数据影响的其他数据影响方法。此外,Tracin-We不仅可以在整体培训输入水平上产生分数,而且还可以在培训输入中的单词水平上产生分数,这是进一步的调试。
translated by 谷歌翻译
众所周知,端到端的神经NLP体系结构很难理解,这引起了近年来为解释性建模的许多努力。模型解释的基本原则是忠诚,即,解释应准确地代表模型预测背后的推理过程。这项调查首先讨论了忠诚的定义和评估及其对解释性的意义。然后,我们通过将方法分为五类来介绍忠实解释的最新进展:相似性方法,模型内部结构的分析,基于反向传播的方法,反事实干预和自我解释模型。每个类别将通过其代表性研究,优势和缺点来说明。最后,我们从它们的共同美德和局限性方面讨论了上述所有方法,并反思未来的工作方向忠实的解释性。对于有兴趣研究可解释性的研究人员,这项调查将为该领域提供可访问且全面的概述,为进一步探索提供基础。对于希望更好地了解自己的模型的用户,该调查将是一项介绍性手册,帮助选择最合适的解释方法。
translated by 谷歌翻译
我们解决了对追踪预测的影响函数的高效计算,回到培训数据。我们提出并分析了一种新方法来加速基于Arnoldi迭代的反向Hessian计算。通过这种改进,我们实现了我们的知识,首次成功实施了影响功能,该函数的尺寸为全尺寸(语言和愿景)变压器模型,具有数十亿个参数。我们评估我们对图像分类和序列任务的方法,以百万次训练示例。我们的代码将在https://github.com/google-research/jax-influence上获得。
translated by 谷歌翻译