Stairs are common building structures in urban environment, and stair detection is an important part of environment perception for autonomous mobile robots. Most existing algorithms have difficulty combining the visual information from binocular sensors effectively and ensuring reliable detection at night and in the case of extremely fuzzy visual clues. To solve these problems, we propose a neural network architecture with inputs of both RGB map and depth map. Specifically, we design the selective module which can make the network learn the complementary relationship between RGB map and depth map and effectively combine the information from RGB map and depth map in different scenes. In addition, we also design a line clustering algorithm for the post-processing of detection results, which can make full use of the detection results to obtain the geometric parameters of stairs. Experiments on our dataset show that our method can achieve better accuracy and recall compared with the previous state-of-the-art deep learning method, which are 5.64% and 7.97%, respectively. Our method also has extremely fast detection speed, and a lightweight version can achieve 300 + frames per second with the same resolution, which can meet the needs of most real-time detection scenes.
translated by 谷歌翻译
Visual perception plays an important role in autonomous driving. One of the primary tasks is object detection and identification. Since the vision sensor is rich in color and texture information, it can quickly and accurately identify various road information. The commonly used technique is based on extracting and calculating various features of the image. The recent development of deep learning-based method has better reliability and processing speed and has a greater advantage in recognizing complex elements. For depth estimation, vision sensor is also used for ranging due to their small size and low cost. Monocular camera uses image data from a single viewpoint as input to estimate object depth. In contrast, stereo vision is based on parallax and matching feature points of different views, and the application of deep learning also further improves the accuracy. In addition, Simultaneous Location and Mapping (SLAM) can establish a model of the road environment, thus helping the vehicle perceive the surrounding environment and complete the tasks. In this paper, we introduce and compare various methods of object detection and identification, then explain the development of depth estimation and compare various methods based on monocular, stereo, and RDBG sensors, next review and compare various methods of SLAM, and finally summarize the current problems and present the future development trends of vision technologies.
translated by 谷歌翻译
准确的轨道位置是铁路支持驱动系统的重要组成部分,用于安全监控。激光雷达可以获得携带铁路环境的3D信息的点云,特别是在黑暗和可怕的天气条件下。在本文中,提出了一种基于3D点云的实时轨识别方法来解决挑战,如无序,不均匀的密度和大量点云的挑战。首先呈现Voxel Down-采样方法,用于铁路点云的密度平衡,并且金字塔分区旨在将3D扫描区域划分为具有不同卷的体素。然后,开发了一个特征编码模块以找到最近的邻点并聚合它们的局部几何特征。最后,提出了一种多尺度神经网络以产生每个体素和轨道位置的预测结果。该实验是在铁路的3D点云数据的9个序列下进行的。结果表明,该方法在检测直,弯曲和其他复杂的拓扑轨道方面具有良好的性能。
translated by 谷歌翻译
Recently, over-height vehicle strike frequently occurs, causing great economic cost and serious safety problems. Hence, an alert system which can accurately discover any possible height limiting devices in advance is necessary to be employed in modern large or medium sized cars, such as touring cars. Detecting and estimating the height limiting devices act as the key point of a successful height limit alert system. Though there are some works research height limit estimation, existing methods are either too computational expensive or not accurate enough. In this paper, we propose a novel stereo-based pipeline named SHLE for height limit estimation. Our SHLE pipeline consists of two stages. In stage 1, a novel devices detection and tracking scheme is introduced, which accurately locate the height limit devices in the left or right image. Then, in stage 2, the depth is temporally measured, extracted and filtered to calculate the height limit device. To benchmark the height limit estimation task, we build a large-scale dataset named "Disparity Height", where stereo images, pre-computed disparities and ground-truth height limit annotations are provided. We conducted extensive experiments on "Disparity Height" and the results show that SHLE achieves an average error below than 10cm though the car is 70m away from the devices. Our method also outperforms all compared baselines and achieves state-of-the-art performance. Code is available at https://github.com/Yang-Kaixing/SHLE.
translated by 谷歌翻译
感觉到航天器的三维(3D)结构是成功执行许多轨道空间任务的先决条件,并且可以为许多下游视觉算法提供关键的输入。在本文中,我们建议使用光检测和范围传感器(LIDAR)和单眼相机感知航天器的3D结构。为此,提出了航天器深度完成网络(SDCNET),以根据灰色图像和稀疏深度图回收密集的深度图。具体而言,SDCNET将对象级航天器的深度完成任务分解为前景分割子任务和前景深度完成子任务,该任务首先将航天器区域划分,然后在段前景区域执行深度完成。这样,有效地避免了对前景航天器深度完成的背景干扰。此外,还提出了一个基于注意力的特征融合模块,以汇总不同输入之间的互补信息,该信息可以按顺序推论沿通道沿着不同特征和空间维度之间的相关性。此外,还提出了四个指标来评估对象级的深度完成性能,这可以更直观地反映航天器深度完成结果的质量。最后,构建了一个大规模的卫星深度完成数据集,用于培训和测试航天器深度完成算法。数据集上的经验实验证明了拟议的SDCNET的有效性,该SDCNET达到了0.25亿的平均绝对误差和0.759m的平均绝对截断误差,并通过较大的边缘超过了前期方法。航天器姿势估计实验也基于深度完成结果进行,实验结果表明,预测的密集深度图可以满足下游视觉任务的需求。
translated by 谷歌翻译
作为许多自主驾驶和机器人活动的基本组成部分,如自我运动估计,障碍避免和场景理解,单眼深度估计(MDE)引起了计算机视觉和机器人社区的极大关注。在过去的几十年中,已经开发了大量方法。然而,据我们所知,对MDE没有全面调查。本文旨在通过审查1970年至2021年之间发布的197个相关条款来弥补这一差距。特别是,我们为涵盖各种方法的MDE提供了全面的调查,介绍了流行的绩效评估指标并汇总公开的数据集。我们还总结了一些代表方法的可用开源实现,并比较了他们的表演。此外,我们在一些重要的机器人任务中审查了MDE的应用。最后,我们通过展示一些有希望的未来研究方向来结束本文。预计本调查有助于读者浏览该研究领域。
translated by 谷歌翻译
它得到了很好的认识到,从深度感知的LIDAR点云和语义富有的立体图像中融合互补信息将有利于3D对象检测。然而,探索稀疏3D点和密集2D像素之间固有的不自然相互作用并不重要。为了简化这种困难,最近的建议通常将3D点投影到2D图像平面上以对图像数据进行采样,然后聚合点处的数据。然而,这种方法往往遭受点云和RGB图像的分辨率之间的不匹配,导致次优性能。具体地,作为多模态数据聚合位置的稀疏点导致高分辨率图像的严重信息丢失,这反过来破坏了多传感器融合的有效性。在本文中,我们呈现VPFNET - 一种新的架构,可以在“虚拟”点处巧妙地对齐和聚合点云和图像数据。特别地,它们的密度位于3D点和2D像素的密度之间,虚拟点可以很好地桥接两个传感器之间的分辨率间隙,从而保持更多信息以进行处理。此外,我们还研究了可以应用于点云和RGB图像的数据增强技术,因为数据增强对迄今为止对3D对象探测器的贡献不可忽略。我们对Kitti DataSet进行了广泛的实验,与最先进的方法相比,观察到了良好的性能。值得注意的是,我们的VPFNET在KITTI测试集上实现了83.21 \%中等3D AP和91.86 \%适度的BEV AP,自2021年5月21日起排名第一。网络设计也考虑了计算效率 - 我们可以实现FPS 15对单个NVIDIA RTX 2080TI GPU。该代码将用于复制和进一步调查。
translated by 谷歌翻译
对于许多应用程序,包括自动驾驶,机器人抓握和增强现实,单眼3D对象检测是一项基本但非常重要的任务。现有的领先方法倾向于首先估算输入图像的深度,并基于点云检测3D对象。该例程遭受了深度估计和对象检测之间固有的差距。此外,预测误差积累也会影响性能。在本文中,提出了一种名为MonopCN的新方法。引入单频道的洞察力是,我们建议在训练期间模拟基于点云的探测器的特征学习行为。因此,在推理期间,学习的特征和预测将与基于点云的检测器相似。为了实现这一目标,我们建议一个场景级仿真模块,一个ROI级别的仿真模块和一个响应级仿真模块,这些模块逐渐用于检测器的完整特征学习和预测管道。我们将我们的方法应用于著名的M3D-RPN检测器和CADDN检测器,并在Kitti和Waymo Open数据集上进行了广泛的实验。结果表明,我们的方法始终提高不同边缘的不同单眼探测器的性能,而无需更改网络体系结构。我们的方法最终达到了最先进的性能。
translated by 谷歌翻译
3D object detection is vital as it would enable us to capture objects' sizes, orientation, and position in the world. As a result, we would be able to use this 3D detection in real-world applications such as Augmented Reality (AR), self-driving cars, and robotics which perceive the world the same way we do as humans. Monocular 3D Object Detection is the task to draw 3D bounding box around objects in a single 2D RGB image. It is localization task but without any extra information like depth or other sensors or multiple images. Monocular 3D object detection is an important yet challenging task. Beyond the significant progress in image-based 2D object detection, 3D understanding of real-world objects is an open challenge that has not been explored extensively thus far. In addition to the most closely related studies.
translated by 谷歌翻译
在鸟眼中学习强大的表现(BEV),以进行感知任务,这是趋势和吸引行业和学术界的广泛关注。大多数自动驾驶算法的常规方法在正面或透视视图中执行检测,细分,跟踪等。随着传感器配置变得越来越复杂,从不同的传感器中集成了多源信息,并在统一视图中代表功能至关重要。 BEV感知继承了几个优势,因为代表BEV中的周围场景是直观和融合友好的。对于BEV中的代表对象,对于随后的模块,如计划和/或控制是最可取的。 BEV感知的核心问题在于(a)如何通过从透视视图到BEV来通过视图转换来重建丢失的3D信息; (b)如何在BEV网格中获取地面真理注释; (c)如何制定管道以合并来自不同来源和视图的特征; (d)如何适应和概括算法作为传感器配置在不同情况下各不相同。在这项调查中,我们回顾了有关BEV感知的最新工作,并对不同解决方案进行了深入的分析。此外,还描述了该行业的BEV方法的几种系统设计。此外,我们推出了一套完整的实用指南,以提高BEV感知任务的性能,包括相机,激光雷达和融合输入。最后,我们指出了该领域的未来研究指示。我们希望该报告能阐明社区,并鼓励对BEV感知的更多研究。我们保留一个活跃的存储库来收集最新的工作,并在https://github.com/openperceptionx/bevperception-survey-recipe上提供一包技巧的工具箱。
translated by 谷歌翻译
语义细分是农业机器人了解自然果园周围环境的一项基本任务。 LIDAR技术的最新发展使机器人能够在非结构化果园中获得准确的范围测量。与RGB图像相比,3D点云具有几何特性。通过将LIDAR和相机组合在一起,可以获得有关几何和纹理的丰富信息。在这项工作中,我们提出了一种基于深度学习的分割方法,以对来自激光镜像相机视觉传感器的融合数据进行准确的语义分割。在这项工作中探索和解决了两个关键问题。第一个是如何有效地从多传感器数据中融合纹理和几何特征。第二个是如何在严重失衡类条件下有效训练3D分割网络的方法。此外,详细介绍了果园中3D分割的实现,包括LiDAR-CAMERA数据融合,数据收集和标签,网络培训和模型推断。在实验中,我们在处理从苹果园获得的高度非结构化和嘈杂的点云时,全面分析了网络设置。总体而言,我们提出的方法在高分辨率点云(100k-200k点)上的水果分割时达到了86.2%MIOU。实验结果表明,所提出的方法可以在真实的果园环境中进行准确的分割。
translated by 谷歌翻译
In this work, we study 3D object detection from RGB-D data in both indoor and outdoor scenes. While previous methods focus on images or 3D voxels, often obscuring natural 3D patterns and invariances of 3D data, we directly operate on raw point clouds by popping up RGB-D scans. However, a key challenge of this approach is how to efficiently localize objects in point clouds of large-scale scenes (region proposal). Instead of solely relying on 3D proposals, our method leverages both mature 2D object detectors and advanced 3D deep learning for object localization, achieving efficiency as well as high recall for even small objects. Benefited from learning directly in raw point clouds, our method is also able to precisely estimate 3D bounding boxes even under strong occlusion or with very sparse points. Evaluated on KITTI and SUN RGB-D 3D detection benchmarks, our method outperforms the state of the art by remarkable margins while having real-time capability. * Majority of the work done as an intern at Nuro, Inc. depth to point cloud 2D region (from CNN) to 3D frustum 3D box (from PointNet)
translated by 谷歌翻译
由于缺乏深度信息,单眼3D对象检测在自主驾驶中非常具有挑战性。本文提出了一种基于多尺度深度分层的单眼单目眼3D对象检测算法,它使用锚定方法检测每像素预测中的3D对象。在所提出的MDS-Net中,开发了一种新的基于深度的分层结构,以通过在对象的深度和图像尺寸之间建立数学模型来改善网络的深度预测能力。然后开发出新的角度损耗功能,以进一步提高角度预测的精度并提高训练的收敛速度。最终在后处理阶段最终应用优化的软,以调整候选盒的置信度。基蒂基准测试的实验表明,MDS-Net在3D检测中优于现有的单目3D检测方法,并在满足实时要求时进行3D检测和BEV检测任务。
translated by 谷歌翻译
以视觉为中心的BEV感知由于其固有的优点,最近受到行业和学术界的关注,包括展示世界自然代表和融合友好。随着深度学习的快速发展,已经提出了许多方法来解决以视觉为中心的BEV感知。但是,最近没有针对这个小说和不断发展的研究领域的调查。为了刺激其未来的研究,本文对以视觉为中心的BEV感知及其扩展进行了全面调查。它收集并组织了最近的知识,并对常用算法进行了系统的综述和摘要。它还为几项BEV感知任务提供了深入的分析和比较结果,从而促进了未来作品的比较并激发了未来的研究方向。此外,还讨论了经验实现细节并证明有利于相关算法的开发。
translated by 谷歌翻译
深度强化学习在基于激光的碰撞避免有效的情况下取得了巨大的成功,因为激光器可以感觉到准确的深度信息而无需太多冗余数据,这可以在算法从模拟环境迁移到现实世界时保持算法的稳健性。但是,高成本激光设备不仅很难为大型机器人部署,而且还表现出对复杂障碍的鲁棒性,包括不规则的障碍,例如桌子,桌子,椅子和架子,以及复杂的地面和特殊材料。在本文中,我们提出了一个新型的基于单眼相机的复杂障碍避免框架。特别是,我们创新地将捕获的RGB图像转换为伪激光测量,以进行有效的深度强化学习。与在一定高度捕获的传统激光测量相比,仅包含距离附近障碍的一维距离信息,我们提议的伪激光测量融合了捕获的RGB图像的深度和语义信息,这使我们的方法有效地有效障碍。我们还设计了一个功能提取引导模块,以加重输入伪激光测量,并且代理对当前状态具有更合理的关注,这有利于提高障碍避免政策的准确性和效率。
translated by 谷歌翻译
有希望的互补性存在着颜色图像的纹理特征和激光点云的几何信息。但是,在3D对象检测领域中,仍然存在许多挑战,以实现高效且可靠的特征融合。在本文中,首先,在2D平面中填充了非结构化的3D点云,并且使用投影感知的卷积层更快地提取3D点云特征。此外,在数据预处理中提前建立了不同传感器信号之间的相应索引,从而实现更快的交叉模式融合。为了解决LIDAR点和图像像素的未对准问题,提出了两个新的插件融合模块,即licamfuse和bilicamfuse。在Licamfuse中,提出了带有双峰特征的欧几里得距离的软查询权重。在Bilicamfuse中,提出了双重注意的融合模块,以深层关联场景的几何和纹理特征。 KITTI数据集上的定量结果表明,所提出的方法可以实现更好的特征级融合。此外,与现有方法相比,建议的网络显示出更短的运行时间。
translated by 谷歌翻译
深度完成旨在预测从深度传感器(例如Lidars)中捕获的极稀疏图的密集像素深度。它在各种应用中起着至关重要的作用,例如自动驾驶,3D重建,增强现实和机器人导航。基于深度学习的解决方案已经证明了这项任务的最新成功。在本文中,我们首次提供了全面的文献综述,可帮助读者更好地掌握研究趋势并清楚地了解当前的进步。我们通过通过对现有方法进行分类的新型分类法提出建议,研究网络体系结构,损失功能,基准数据集和学习策略的设计方面的相关研究。此外,我们在包括室内和室外数据集(包括室内和室外数据集)上进行了三个广泛使用基准测试的模型性能进行定量比较。最后,我们讨论了先前作品的挑战,并为读者提供一些有关未来研究方向的见解。
translated by 谷歌翻译
深度估计是近年来全景图像3D重建的关键步骤。 Panorama图像保持完整的空间信息,但与互联的投影引入失真。在本文中,我们提出了一种基于自适应组合扩张的卷积的ACDNet,以预测单眼地全景图像的密集深度图。具体地,我们将卷积核与不同的扩张相结合,以延长昼夜投影中的接收领域。同时,我们介绍了一个自适应渠道 - 明智的融合模块,总结了特征图,并在频道的接收领域中获得不同的关注区域。由于利用通道的注意力构建自适应通道 - 明智融合模块,网络可以有效地捕获和利用跨通道上下文信息。最后,我们对三个数据集(虚拟和现实世界)进行深度估计实验,实验结果表明,我们所提出的ACDNET基本上优于当前的最先进(SOTA)方法。我们的代码和模型参数在https://github.com/zcq15/acdnet中访问。
translated by 谷歌翻译
3D object detection from LiDAR point cloud is a challenging problem in 3D scene understanding and has many practical applications. In this paper, we extend our preliminary work PointRCNN to a novel and strong point-cloud-based 3D object detection framework, the part-aware and aggregation neural network (Part-A 2 net). The whole framework consists of the part-aware stage and the part-aggregation stage. Firstly, the part-aware stage for the first time fully utilizes free-of-charge part supervisions derived from 3D ground-truth boxes to simultaneously predict high quality 3D proposals and accurate intra-object part locations. The predicted intra-object part locations within the same proposal are grouped by our new-designed RoI-aware point cloud pooling module, which results in an effective representation to encode the geometry-specific features of each 3D proposal. Then the part-aggregation stage learns to re-score the box and refine the box location by exploring the spatial relationship of the pooled intra-object part locations. Extensive experiments are conducted to demonstrate the performance improvements from each component of our proposed framework. Our Part-A 2 net outperforms all existing 3D detection methods and achieves new state-of-the-art on KITTI 3D object detection dataset by utilizing only the LiDAR point cloud data. Code is available at https://github.com/sshaoshuai/PointCloudDet3D.
translated by 谷歌翻译
With the development of convolutional neural networks, hundreds of deep learning based dehazing methods have been proposed. In this paper, we provide a comprehensive survey on supervised, semi-supervised, and unsupervised single image dehazing. We first discuss the physical model, datasets, network modules, loss functions, and evaluation metrics that are commonly used. Then, the main contributions of various dehazing algorithms are categorized and summarized. Further, quantitative and qualitative experiments of various baseline methods are carried out. Finally, the unsolved issues and challenges that can inspire the future research are pointed out. A collection of useful dehazing materials is available at \url{https://github.com/Xiaofeng-life/AwesomeDehazing}.
translated by 谷歌翻译