马尔可夫链蒙特卡洛方法用于从复杂分布和估计归一化常数采样的方法,通常会模拟沿着退火路径的一系列中间分布的样品,该路径桥梁在可缝隙的初始分布和目标密度之间桥接。先前的工作已经使用准算术手段构建了退火路径,并将所得的中间密度解释为最小化对终点的预期差异。我们在单调的密度函数嵌入下使用布雷格曼的分歧对这种“质心”属性进行了全面分析,从而将诸如Amari和Renyi的$ {\ alpha} $ - divergences等共同差异相关联,$ {(\ alpha,\ beta) } $ - 分歧,以及沿着退火路径的中间密度的詹森 - 香农脱落。我们的分析强调了使用Zhang 2004的Rho-Tau Bregman Divergence框架; 2013年的Rho-Tau Bregman Divergence框架之间的参数族之间的相互作用和分歧函数。
translated by 谷歌翻译
Jensen-Shannon Divergence是无界的Kullback-Leibler Divergence的著名界面对称性,可测量总的Kullback-Leibler差异与平均混合物分布。但是,高斯分布之间的詹森 - 香农差异在封闭式中不可用。为了绕过这个问题,我们使用抽象方式提出了Jensen-Shannon(JS)差异的概括,当根据分布的参数家族选择均值时,该抽象方式会产生封闭形式的表达式。更普遍地,我们使用从抽象手段得出的广义统计混合物来定义任何距离的JS隔离化。特别是,我们首先表明几何平均值非常适合指数族,并报告了(i)(i)同一指数家族概率密度之间的几何詹森 - 香农(Jensen-Shannon)的两种封闭式公式,以及(ii)几何学反向kullback-leibler发散的JS对称。作为第二个说明示例,我们表明,谐波平均值非常适合cauchy分布,并报告了缩放尺度分布之间的谐波詹森 - 香农差异的封闭式公式。我们还定义了矩阵(例如量子Jensen-Shannon Diverences)之间的广义詹森 - 香农差异,并考虑了这些新颖的詹森 - 香农分歧的聚类。
translated by 谷歌翻译
量子哈密顿学习和量子吉布斯采样的双重任务与物理和化学中的许多重要问题有关。在低温方案中,这些任务的算法通常会遭受施状能力,例如因样本或时间复杂性差而遭受。为了解决此类韧性,我们将量子自然梯度下降的概括引入了参数化的混合状态,并提供了稳健的一阶近似算法,即量子 - 固定镜下降。我们使用信息几何学和量子计量学的工具证明了双重任务的数据样本效率,因此首次将经典Fisher效率的开创性结果推广到变异量子算法。我们的方法扩展了以前样品有效的技术,以允许模型选择的灵活性,包括基于量子汉密尔顿的量子模型,包括基于量子的模型,这些模型可能会规避棘手的时间复杂性。我们的一阶算法是使用经典镜下降二元性的新型量子概括得出的。两种结果都需要特殊的度量选择,即Bogoliubov-Kubo-Mori度量。为了从数值上测试我们提出的算法,我们将它们的性能与现有基准进行了关于横向场ISING模型的量子Gibbs采样任务的现有基准。最后,我们提出了一种初始化策略,利用几何局部性来建模状态的序列(例如量子 - 故事过程)的序列。我们从经验上证明了它在实际和想象的时间演化的经验上,同时定义了更广泛的潜在应用。
translated by 谷歌翻译
变性推理(VI)为基于传统的采样方法提供了一种吸引人的替代方法,用于实施贝叶斯推断,因为其概念性的简单性,统计准确性和计算可扩展性。然而,常见的变分近似方案(例如平均场(MF)近似)需要某些共轭结构以促进有效的计算,这可能会增加不必要的限制对可行的先验分布家族,并对变异近似族对差异进行进一步的限制。在这项工作中,我们开发了一个通用计算框架,用于实施MF-VI VIA WASSERSTEIN梯度流(WGF),这是概率度量空间上的梯度流。当专门针对贝叶斯潜在变量模型时,我们将分析基于时间消化的WGF交替最小化方案的算法收敛,用于实现MF近似。特别是,所提出的算法类似于EM算法的分布版本,包括更新潜在变量变异分布的E step以及在参数的变异分布上进行最陡峭下降的m step。我们的理论分析依赖于概率度量空间中的最佳运输理论和细分微积分。我们证明了时间限制的WGF的指数收敛性,以最大程度地减少普通大地测量学严格的凸度的通用物镜功能。我们还提供了通过使用时间限制的WGF的固定点方程从MF近似获得的变异分布的指数收缩的新证明。我们将方法和理论应用于两个经典的贝叶斯潜在变量模型,即高斯混合模型和回归模型的混合物。还进行了数值实验,以补充这两个模型下的理论发现。
translated by 谷歌翻译
我们提供了概率分布的Riemannian歧管上的经典力学的信息几何公式,该分布是具有双翼连接的仿射歧管。在非参数形式主义中,我们考虑了有限的样本空间上的全套正概率函数,并以统计歧管上的切线和cotangent空间为特定的表达式提供了一种,就希尔伯特束结构而言,我们称之统计捆绑包。在这种情况下,我们使用规范双对的平行传输来计算一维统计模型的速度和加速度,并在束上定义了Lagrangian和Hamiltonian力学的连贯形式主义。最后,在一系列示例中,我们展示了我们的形式主义如何为概率单纯性加速自然梯度动力学提供一个一致的框架,为在优化,游戏理论和神经网络中的直接应用铺平了道路。
translated by 谷歌翻译
指数族在机器学习中广泛使用,包括连续和离散域中的许多分布(例如,通过SoftMax变换,Gaussian,Dirichlet,Poisson和分类分布)。这些家庭中的每个家庭的分布都有固定的支持。相比之下,对于有限域而言,最近在SoftMax稀疏替代方案(例如Sparsemax,$ \ alpha $ -entmax和Fusedmax)的稀疏替代方案中导致了带有不同支持的分布。本文基于几种技术贡献,开发了连续分布的稀疏替代方案:首先,我们定义了$ \ omega $ regultion的预测图和任意域的Fenchel-young损失(可能是无限或连续的)。对于线性参数化的家族,我们表明,Fenchel-Young损失的最小化等效于统计的矩匹配,从而概括了指数家族的基本特性。当$ \ omega $是带有参数$ \ alpha $的Tsallis negentropy时,我们将获得````trabormed rompential指数)'',其中包括$ \ alpha $ -entmax和sparsemax和sparsemax($ \ alpha = 2 $)。对于二次能量函数,产生的密度为$ \ beta $ -Gaussians,椭圆形分布的实例,其中包含特殊情况,即高斯,双重量级,三人级和epanechnikov密度,我们为差异而得出了差异的封闭式表达式, Tsallis熵和Fenchel-Young损失。当$ \ Omega $是总变化或Sobolev正常化程序时,我们将获得Fusedmax的连续版本。最后,我们引入了连续的注意机制,从\ {1、4/3、3/3、3/2、2 \} $中得出有效的梯度反向传播算法。使用这些算法,我们证明了我们的稀疏连续分布,用于基于注意力的音频分类和视觉问题回答,表明它们允许参加时间间隔和紧凑区域。
translated by 谷歌翻译
诸如最大熵正则化之类的政策正则化方法被广泛用于增强学习以提高学习政策的鲁棒性。在本文中,我们展示了这种鲁棒性是如何通过对冲的奖励功能扰动而产生的,奖励功能是从想象中的对手设定的限制设置中选择的。使用凸双重性,我们表征了KL和Alpha-Divergence正则化的一组强大的对抗奖励扰动集,其中包括香农和Tsallis熵正则定期为特殊情况。重要的是,可以在此强大集合中给出概括保证。我们提供了有关最坏的奖励扰动的详细讨论,并提供了直观的经验示例,以说明这种稳健性及其与概括的关系。最后,我们讨论我们的分析如何补充并扩展对对抗奖励鲁棒性和路径一致性最佳条件的先前结果。
translated by 谷歌翻译
期望 - 最大化(EM)算法是一种简单的元叠加,当观察到的数据中缺少测量值或数据由可观察到的数据组成时,它已多年来用作统计推断的方法。它的一般属性进行了充分的研究,而且还有无数方法将其应用于个人问题。在本文中,我们介绍了$ em $ $ and算法,EM算法的信息几何公式及其扩展和应用程序以及各种问题。具体而言,我们将看到,可以制定一个异常稳定推理算法,用于计算通道容量的算法,概率单纯性的参数估计方法,特定的多变量分析方法,例如概率模型中的主要组件分析和模态回归中的主成分分析,基质分解和学习生成模型,这些模型最近从几何学角度引起了深度学习的关注。
translated by 谷歌翻译
我们将最初在多维扩展和降低多元数据的降低领域发展为功能设置。我们专注于经典缩放和ISOMAP - 在这些领域中起重要作用的原型方法 - 并在功能数据分析的背景下展示它们的使用。在此过程中,我们强调了环境公制扮演的关键作用。
translated by 谷歌翻译
Jeffreys分歧是广泛用于信息科学的面向克鲁克 - 雷布尔分歧的着名对称化。由于高斯混合模型之间的jeffreys在闭合形式之间提供,因此在文献中提出了具有优缺点的各种技术,以估计,近似或降低这种发散。在本文中,我们提出了一种简单而快速的启发式,以近似与任意数量的组件的两个单变量高斯混合物之间的Jeffreys分歧。我们的启发式依赖于将混合物转换成属于指数家庭的双重参数化概率密度。特别是,我们考虑多功能多项式指数家庭密度,并设计分歧,以闭合形成高斯混合物与其多项式指数密度近似的拟合的良好度。这种拟合的良好分歧是Hyv \“Arinen分歧的概括,用于估计具有计算棘手的癌症的模型。它允许我们通过选择用于近似混合物的多项式指数密度的订单来执行模型选择。我们展示实验地,我们的启发式近似于jeffreys发散的数量幅度提高了随机蒙特卡罗估计的计算时间,同时接近jeffreys发散,特别是当混合物具有非常少量的模式时。此外,我们的混合物 - 指数家庭转换技术可能在其他设置中证明。
translated by 谷歌翻译
三角形流量,也称为kn \“{o}的Rosenblatt测量耦合,包括用于生成建模和密度估计的归一化流模型的重要构建块,包括诸如实值的非体积保存变换模型的流行自回归流模型(真实的NVP)。我们提出了三角形流量统计模型的统计保证和样本复杂性界限。特别是,我们建立了KN的统计一致性和kullback-leibler估算器的rospblatt的kullback-leibler估计的有限样本会聚率使用实证过程理论的工具测量耦合。我们的结果突出了三角形流动下播放功能类的各向异性几何形状,优化坐标排序,并导致雅各比比流动的统计保证。我们对合成数据进行数值实验,以说明我们理论发现的实际意义。
translated by 谷歌翻译
Normalizing flows provide a general mechanism for defining expressive probability distributions, only requiring the specification of a (usually simple) base distribution and a series of bijective transformations. There has been much recent work on normalizing flows, ranging from improving their expressive power to expanding their application. We believe the field has now matured and is in need of a unified perspective. In this review, we attempt to provide such a perspective by describing flows through the lens of probabilistic modeling and inference. We place special emphasis on the fundamental principles of flow design, and discuss foundational topics such as expressive power and computational trade-offs. We also broaden the conceptual framing of flows by relating them to more general probability transformations. Lastly, we summarize the use of flows for tasks such as generative modeling, approximate inference, and supervised learning.
translated by 谷歌翻译
度量的运输提供了一种用于建模复杂概率分布的多功能方法,并具有密度估计,贝叶斯推理,生成建模及其他方法的应用。单调三角传输地图$ \ unicode {x2014} $近似值$ \ unicode {x2013} $ rosenblatt(kr)重新安排$ \ unicode {x2014} $是这些任务的规范选择。然而,此类地图的表示和参数化对它们的一般性和表现力以及对从数据学习地图学习(例如,通过最大似然估计)出现的优化问题的属性产生了重大影响。我们提出了一个通用框架,用于通过平滑函数的可逆变换来表示单调三角图。我们建立了有关转化的条件,以使相关的无限维度最小化问题没有伪造的局部最小值,即所有局部最小值都是全球最小值。我们展示了满足某些尾巴条件的目标分布,唯一的全局最小化器与KR地图相对应。鉴于来自目标的样品,我们提出了一种自适应算法,该算法估计了基础KR映射的稀疏半参数近似。我们证明了如何将该框架应用于关节和条件密度估计,无可能的推断以及有向图形模型的结构学习,并在一系列样本量之间具有稳定的概括性能。
translated by 谷歌翻译
这项正在进行的工作旨在为统计学习提供统一的介绍,从诸如GMM和HMM等经典模型到现代神经网络(如VAE和扩散模型)缓慢地构建。如今,有许多互联网资源可以孤立地解释这一点或新的机器学习算法,但是它们并没有(也不能在如此简短的空间中)将这些算法彼此连接起来,或者与统计模型的经典文献相连现代算法出现了。同样明显缺乏的是一个单一的符号系统,尽管对那些已经熟悉材料的人(如这些帖子的作者)不满意,但对新手的入境造成了重大障碍。同样,我的目的是将各种模型(尽可能)吸收到一个用于推理和学习的框架上,表明(以及为什么)如何以最小的变化将一个模型更改为另一个模型(其中一些是新颖的,另一些是文献中的)。某些背景当然是必要的。我以为读者熟悉基本的多变量计算,概率和统计以及线性代数。这本书的目标当然不是​​完整性,而是从基本知识到过去十年中极强大的新模型的直线路径或多或少。然后,目标是补充而不是替换,诸如Bishop的\ emph {模式识别和机器学习}之类的综合文本,该文本现在已经15岁了。
translated by 谷歌翻译
Deep generative models parametrized up to a normalizing constant (e.g. energy-based models) are difficult to train by maximizing the likelihood of the data because the likelihood and/or gradients thereof cannot be explicitly or efficiently written down. Score matching is a training method, whereby instead of fitting the likelihood $\log p(x)$ for the training data, we instead fit the score function $\nabla_x \log p(x)$ -- obviating the need to evaluate the partition function. Though this estimator is known to be consistent, its unclear whether (and when) its statistical efficiency is comparable to that of maximum likelihood -- which is known to be (asymptotically) optimal. We initiate this line of inquiry in this paper, and show a tight connection between statistical efficiency of score matching and the isoperimetric properties of the distribution being estimated -- i.e. the Poincar\'e, log-Sobolev and isoperimetric constant -- quantities which govern the mixing time of Markov processes like Langevin dynamics. Roughly, we show that the score matching estimator is statistically comparable to the maximum likelihood when the distribution has a small isoperimetric constant. Conversely, if the distribution has a large isoperimetric constant -- even for simple families of distributions like exponential families with rich enough sufficient statistics -- score matching will be substantially less efficient than maximum likelihood. We suitably formalize these results both in the finite sample regime, and in the asymptotic regime. Finally, we identify a direct parallel in the discrete setting, where we connect the statistical properties of pseudolikelihood estimation with approximate tensorization of entropy and the Glauber dynamics.
translated by 谷歌翻译
这是模型选择和假设检测的边缘似然计算的最新介绍和概述。计算概率模型(或常量比率)的常规规定常数是许多统计数据,应用数学,信号处理和机器学习中的许多应用中的基本问题。本文提供了对主题的全面研究。我们突出了不同技术之间的局限性,优势,连接和差异。还描述了使用不正确的前沿的问题和可能的解决方案。通过理论比较和数值实验比较一些最相关的方法。
translated by 谷歌翻译
在本章中,我们确定了基本的几何结构,这些几何结构是采样,优化,推理和自适应决策问题的基础。基于此识别,我们得出了利用这些几何结构来有效解决这些问题的算法。我们表明,在这些领域中自然出现了广泛的几何理论,范围从测量过程,信息差异,泊松几何和几何整合。具体而言,我们解释了(i)如何利用汉密尔顿系统的符合性几何形状,使我们能够构建(加速)采样和优化方法,(ii)希尔伯特亚空间和Stein操作员的理论提供了一种通用方法来获得可靠的估计器,(iii)(iii)(iii)保留决策的信息几何形状会产生执行主动推理的自适应剂。在整个过程中,我们强调了这些领域之间的丰富联系。例如,推论借鉴了抽样和优化,并且自适应决策通过推断其反事实后果来评估决策。我们的博览会提供了基本思想的概念概述,而不是技术讨论,可以在本文中的参考文献中找到。
translated by 谷歌翻译
Denoising diffusions are state-of-the-art generative models which exhibit remarkable empirical performance and come with theoretical guarantees. The core idea of these models is to progressively transform the empirical data distribution into a simple Gaussian distribution by adding noise using a diffusion. We obtain new samples whose distribution is close to the data distribution by simulating a "denoising" diffusion approximating the time reversal of this "noising" diffusion. This denoising diffusion relies on approximations of the logarithmic derivatives of the noised data densities, known as scores, obtained using score matching. Such models can be easily extended to perform approximate posterior simulation in high-dimensional scenarios where one can only sample from the prior and simulate synthetic observations from the likelihood. These methods have been primarily developed for data on $\mathbb{R}^d$ while extensions to more general spaces have been developed on a case-by-case basis. We propose here a general framework which not only unifies and generalizes this approach to a wide class of spaces but also leads to an original extension of score matching. We illustrate the resulting class of denoising Markov models on various applications.
translated by 谷歌翻译
我们提出了连续重复的退火流传输蒙特卡洛(CRAFT),该方法结合了顺序的蒙特卡洛(SMC)采样器(本身是退火重要性采样的概括)与使用归一化流量的变异推断。直接训练了归一化的流量,可用于使用KL差异进行每个过渡,以在退火温度之间运输。使用归一化流/SMC近似值估算了此优化目标。我们从概念上展示并使用多个经验示例,这些示例可以改善退火流运输蒙特卡洛(Arbel等,2021),并在其上建造,也可以在基于马尔可夫链蒙特卡洛(MCMC)基于基于的随机归一化流(Wu等人。2020)。通过将工艺纳入粒子MCMC中,我们表明,这种学识渊博的采样器可以在具有挑战性的晶格场理论示例中获得令人印象深刻的准确结果。
translated by 谷歌翻译
桥梁采样是一种强大的蒙特卡洛方法,用于估计标准化常数的比率。引入了各种方法以提高其效率。这些方法旨在通过对它们应用适当的转换而不更改标准化常数来增加密度之间的重叠。在本文中,我们首先给出了最佳桥梁估计器的渐近相对平方误差(RMSE)的新估计器,通过等效地估计两个密度之间的$ f $差异。然后,我们利用此框架,并根据二元式转换提出$ f $ -gan桥估计器($ f $ -GB),该框架将一个密度映射到另一个密度,并最小化最佳桥梁估计器的渐近RMSE相对于密度。通过使用$ f $ gan之间的密度之间的特定$ f $ divergence来选择这种转换。从某种意义上说,在任何给定的候选转换中,$ f $ -GB估算器可以渐近地实现比桥梁估算器低于或等于由任何其他转换的密度低的RMSE,我们显示出$ f $ -GB是最佳的。数值实验表明,$ f $ -GB在模拟和现实世界中的现有方法优于现有方法。此外,我们讨论了桥梁估计器如何自然来自$ f $ divergence估计的问题。
translated by 谷歌翻译