在双皮德机器人上生成健壮步态的能力是他们在硬件上成功实现的关键。为此,这项工作扩展了混合零动力学(HZD)的方法 - 传统上,该方法仅在完美影响事件下通过周期性限制来说明机车稳定性 - 通过包含盐矩阵,以构成合成强大的步行步态的观点。通过共同将扩展盐矩阵的规范和步态生成过程中的机器人的扭矩最小化,我们表明合成的步态比单独使用任何一个术语产生的步态更强大。这些结果在模拟和硬件中显示了琥珀色3M平面和阿塔兰特较低体外外骨骼(无论有没有人类)。最终结果是实验验证,即将盐矩阵与HZD方法相结合,在实践中会产生更健壮的两足步行。
translated by 谷歌翻译
在机器人辅助设备上执行时产生稳定的行走GAIT,即在机器人 - 辅助设备上执行时是一个具有挑战性的任务,通常需要域专家手工调整。本文提出了一种替代方法,在那里我们提出直接进入步态生成过程的肌肉骨骼模型,以直观地塑造所产生的行为。特别是,我们构建一个多域混合系统模型,将系统动态与肌肉模型相结合,以代表自然多连接步行。然后可以通过混合零动态(HZD)方法为该模型生成可提供稳定的行走Gaits。我们通过实验应用我们的综合框架,朝着两项受试者实现了对双致动的转发假体,AMPRO3的多端运动。结果表明,强制执行肌肉模型约束产生产生自然运动的Gaits(通过与运动捕获数据和肌电图进行比较分析)。此外,与使用标称HZD方法产生的Gaits相比,不禁用假肢使用者强烈优选使用我们的框架产生的Gaits,即使使用系统调整方法也是如此。我们得出结论,将机器人行走方法(特别是HZD)与肌肉模型结合的新方法成功地产生了拟人机器人辅助运动。
translated by 谷歌翻译
The ability to generate dynamic walking in real-time for bipedal robots with input constraints and underactuation has the potential to enable locomotion in dynamic, complex and unstructured environments. Yet, the high-dimensional nature of bipedal robots has limited the use of full-order rigid body dynamics to gaits which are synthesized offline and then tracked online. In this work we develop an online nonlinear model predictive control approach that leverages the full-order dynamics to realize diverse walking behaviors. Additionally, this approach can be coupled with gaits synthesized offline via a desired reference to enable a shorter prediction horizon and rapid online re-planning, bridging the gap between online reactive control and offline gait planning. We demonstrate the proposed method, both with and without an offline gait, on the planar robot AMBER-3M in simulation and on hardware.
translated by 谷歌翻译
在本文中,我们全能地提出了一种基于混合线性倒置的方法(H唇),用于合成和稳定3D足底双模行走,重点是彻底的硬件实现。提出了H-唇缘以捕获机器人行走的欠置和致动部分的基本组成部分。然后基于H唇直接合成机器人行走步态。我们全面地表征了H唇的周期性轨道,并通过其步骤 - 步骤(S2S)动力学可证明步骤稳定,然后用于近似于质量中心的水平状态的S2S动态(COM)机器人散步。近似设施基于H唇的步进控制器,提供所需的步长,以稳定机器人行走。通过实现所需的步骤尺寸,机器人实现了动态且稳定的行走。在欠扰动的BipeDal机器人Cassie的模拟和实验中完全评估了该方法,其展示了具有高通用和鲁棒性的动态行走行为。
translated by 谷歌翻译
Controller design for bipedal walking on dynamic rigid surfaces (DRSes), which are rigid surfaces moving in the inertial frame (e.g., ships and airplanes), remains largely uninvestigated. This paper introduces a hierarchical control approach that achieves stable underactuated bipedal robot walking on a horizontally oscillating DRS. The highest layer of our approach is a real-time motion planner that generates desired global behaviors (i.e., the center of mass trajectories and footstep locations) by stabilizing a reduced-order robot model. One key novelty of this layer is the derivation of the reduced-order model by analytically extending the angular momentum based linear inverted pendulum (ALIP) model from stationary to horizontally moving surfaces. The other novelty is the development of a discrete-time foot-placement controller that exponentially stabilizes the hybrid, linear, time-varying ALIP model. The middle layer of the proposed approach is a walking pattern generator that translates the desired global behaviors into the robot's full-body reference trajectories for all directly actuated degrees of freedom. The lowest layer is an input-output linearizing controller that exponentially tracks those full-body reference trajectories based on the full-order, hybrid, nonlinear robot dynamics. Simulations of planar underactuated bipedal walking on a swaying DRS confirm that the proposed framework ensures the walking stability under different DRS motions and gait types.
translated by 谷歌翻译
本文为两足机器人提供了一个步态控制器,鉴于局部斜率和摩擦锥信息,可以在各个地形上行走高度敏捷。没有这些考虑,不合时宜的影响会导致机器人绊倒,而在姿势脚下的切向反作用力不足会导致滑倒。我们通过以新颖的方式将基于角动量线性倒置的摆(ALIP)和模型预测控制(MPC)脚放置计划者组合来解决这些挑战,该模型由虚拟约束方法执行。该过程始于从Cassie 3D Bipedal机器人的完整动力学中抽象,该机器人的质量动力学中心的精确低维表示,通过角动量参数化。在分段平面地形假设和消除机器人质量中心的角动量的术语中,有关接触点的质心动力学变为线性,并具有四个尺寸。重要的是,我们在MPC公式中以均匀间隔的间隔内包含步骤的动力学,以便可以从逐步到步进机器人的演变上进行现实的工作空间约束。低维MPC控制器的输出通过虚拟约束方法直接在高维Cassie机器人上实现。在实验中,我们验证了机器人控制策略在各种表面上具有不同倾斜和质地的性能。
translated by 谷歌翻译
脚踝推断在很大程度上有助于人类步行的肢体能量产生,从而使运动更加顺畅,更有效。向截肢者提供这项净积极工作需要积极的假体,但有可能实现更自然的辅助运动。为此,本文将运动的多连接模型与基于力的非线性优化控制器一起使用,以实现2个受试者的动力转换假体,以实现类似人类的运动学行为,包括脚踝推断。特别是,我们利用基于模型的控制方法进行动态的双足机器人步行,以开发一种系统的方法,以实现不需要特定于主体的调整的动力假体上的人类行走。我们首先综合一个优化问题,该问题产生类似于人类联合轨迹的步态,并通过基于控制Lyapunov函数的基于lyapunov函数的非线性控制器实现这些步态,从。所提出的控制器是针对两个受试者的假体实施的,而无需在受试者之间进行调整,从而模拟了假体关节的特定主体人类运动学趋势。这些实验结果表明,与传统方法相比,我们基于力的非线性控制方法可以更好地跟踪人类运动轨迹。
translated by 谷歌翻译
人类能够以显着的敏捷性和轻松的方式谈判计划和计划外行为。本文的目的是系统地研究这种人类行为向两足步行机器人的翻译,即使形态本质上不同。具体而言,我们从计划和计划外的下台开始的人类数据开始。我们从人类减少阶层建模的角度分析了这些数据,编码质量(COM)运动学和接触力的中心,这使这些行为将这些行为转化为双皮德机器人的相应降低阶模型。我们通过基于非线性优化的控制器将所得的行为嵌入了两足机器人的全阶动力学中。最终结果是在不足的步行机器人上模拟中计划和计划外的下台。
translated by 谷歌翻译
许多用于腿部机器人系统的控制器在离散混合事件下利用开放环控制或闭环控制来增强稳定性。这些控制器出现在几个经过良好研究的现象中,例如Raibert Stepping控制器,Paddle Juggling和Swing Leet Retraction。这项工作介绍了混合事件塑造(HES):一种用于分析和生产稳定混合事件控制器的广义方法。HES利用盐矩阵,该盐矩阵给出了封闭形式的方程,以实现混合事件对稳定性的影响。我们还引入了形状参数,这是可以完全独立于系统动力学以促进稳定性的高阶项。优化方法用于产生这些参数的值,以优化稳定性度量。混合事件塑造捕获了先前开发的控制方法,同时还产生了新的最佳稳定轨迹,而无需连续域反馈。
translated by 谷歌翻译
本文提出了一个模型预测控制(MPC)框架,以实现MIT类人体上的动态步态。除了适应脚步位置和在线时机外,该建议的方法还可以理解高度,接触扳手,躯干旋转,运动学限制和谈判不均匀的地形。具体而言,线性MPC(LMPC)通过与当前的脚步位置进行线性线性线性线性来优化所需的脚步位置。低级任务空间控制器跟踪从LMPC的预测状态和控制轨迹,以利用全身动力学。最后,采用自适应步态频率方案来修改步进频率并增强步行控制器的鲁棒性。 LMPC和任务空间控制都可以作为二次程序(QP)有效地求解,因此适用于实时应用程序。模拟研究中,MIT类人动物遍历波场并从冲动性干扰中恢复为拟议方法恢复。
translated by 谷歌翻译
本文介绍了一个框架,用于合成双皮亚机器人步行,该框架通过数据驱动的台阶(S2S)动力学模型适应未知环境和动态误差。我们首先合成一个S2S控制器,该S2S控制器使用脚部的S2S动力学从混合线性倒置摆(H-LIP)模型中稳定步行。接下来,通过经典的自适应控制方法在线学习了机器人S2S动力学的数据驱动表示。因此,通过适当的连续输出合成捕获数据驱动的S2S控制器和低级跟踪控制器,可以通过适当的连续输出合成来实现所需的离散脚放置。所提出的方法是在仿真的3D两足机器人,Cassie和改进的参考速度跟踪的模拟中实现的。所提出的方法还能够实现步行行为,以适应未知载荷,不准确的机器人模型,外部干扰力,偏置速度估计和未知斜率。
translated by 谷歌翻译
我们提出了一个框架,以使用基于适应性神经调节的线性反向摆(LIP)控制器来生成3D发导的两足机器人的周期性轨迹参考。我们使用LIP模板模型在当前步骤结束时估算机器人的质量(COM)位置和速度,并制定一个离散控制器,该控制器确定下一个脚步位置以实现所需的步行配置文件。该控制器配备了基于神经网络的自适应术语,该术语降低了模型不匹配的模型和物理机器人之间的不匹配,这特别影响了横向运动。然后,使用针对唇部模型计算的脚放置位置用于生成任务空间轨迹(COM和摇摆脚部轨迹),以使实际机器人实现稳定的步行。我们使用快速,实时的基于QP的逆运动算法,该算法从任务空间轨迹中产生联合参考,从而使配方独立于机器人动力学知识。最后,我们用数字机器人在两种情况下都获得了稳定的周期性运动,并在模拟和硬件实验中实施了建议的方法。
translated by 谷歌翻译
由于机器人动力学中的固有非线性,腿部机器人全身动作的在线计划具有挑战性。在这项工作中,我们提出了一个非线性MPC框架,该框架可以通过有效利用机器人动力学结构来在线生成全身轨迹。Biconmp用于在真正的四倍机器人上生成各种环状步态,其性能在不同的地形上进行了评估,对抗不同步态之间的不可预见的推动力并在线过渡。此外,提出了双孔在机器人上产生非平凡无环的全身动态运动的能力。同样的方法也被用来在人体机器人(TALOS)上产生MPC的各种动态运动,并在模拟中产生另一个四倍的机器人(Anymal)。最后,报告并讨论了对计划范围和频率对非线性MPC框架的影响的广泛经验分析。
translated by 谷歌翻译
在腿部机器人的机车上,执行高度敏捷的动态动作,例如跳跃或跑步的踏板乐队,这仍然是一个挑战性的问题。本文提出了一个框架,该框架结合了轨迹优化和模型预测控制,以在踏脚石上执行强大的连续跳跃。在我们的方法中,我们首先利用基于机器人的全非线性动力学的轨迹优化来生成各种跳跃距离的周期性跳跃轨迹。然后,基于模型预测控制的跳跃控制器设计用于实现平滑的跳跃过渡,从而使机器人能够在步进石上实现连续跳跃。得益于将MPC作为实时反馈控制器的合并,该提议的框架也得到了验证,可以对机器人动力学上的高度扰动和模型不确定性具有不均匀的平台。
translated by 谷歌翻译
尽管对Bipeds的运动稳定性进行了广泛的研究,但它们仍然缺乏在湿滑表面上缺乏干扰的应对能力。在本文中,关于表面摩擦限制,开发了一种用于稳定其矢状平面中的双模运动的新型控制器。通过考虑到表面稳定趋势的表面的物理限制,实现了更先进的可靠性水平,从而提供更高的功能,例如在低摩擦表面上推挽恢复,并防止稳定剂过度反应。基于离散的事件的策略包括修改每个脚步开头的步长和时间段,以便在考虑表面摩擦限制作为防止滑动的约束的同时重新建立稳定性必要条件。调整脚步以防止面对外部干扰的滑动被认为是保持稳定性的新策略,与人类反应非常相似。开发方法包括利用基本数学操作来获取控制输入的粗闭式解决方案,允许在收敛和计算成本之间达到平衡,即使具有适度的计算硬件,即使具有实时操作也非常适合实时操作。执行几种数值模拟,包括在低摩擦表面上的不同栅极之间的推挽恢复和切换,以证明所提出的控制器的有效性。在与人体步态经验相关的情况下,结果还揭示了一些有利于稳定性的物理方面以及在Gaits之间切换的事实,以降低面对不同条件的落地的风险。
translated by 谷歌翻译
通常,地形几何形状是非平滑的,非线性的,非凸的,如果通过以机器人为中心的视觉单元感知,则似乎部分被遮住且嘈杂。这项工作介绍了能够实时处理上述问题的完整控制管道。我们制定了一个轨迹优化问题,该问题可以在基本姿势和立足点上共同优化,但要遵守高度图。为了避免收敛到不良的本地Optima,我们部署了逐步的优化技术。我们嵌入了一个紧凑的接触式自由稳定性标准,该标准与非平板地面公式兼容。直接搭配用作转录方法,导致一个非线性优化问题,可以在少于十毫秒内在线解决。为了在存在外部干扰的情况下增加鲁棒性,我们用动量观察者关闭跟踪环。我们的实验证明了爬楼梯,踏上垫脚石上的楼梯,并利用各种动态步态在缝隙上。
translated by 谷歌翻译
在腿的运动中重新规划对于追踪所需的用户速度,在适应地形并拒绝外部干扰的同时至关重要。在这项工作中,我们提出并测试了实验中的实时非线性模型预测控制(NMPC),用于腿部机器人,以实现各种地形上的动态运动。我们引入了一种基于移动性的标准来定义NMPC成本,增强了二次机器人的运动,同时最大化腿部移动性并提高对地形特征的适应。我们的NMPC基于实时迭代方案,使我们能够以25美元的价格重新计划在线,\ Mathrm {Hz} $ 2 $ 2 $ 2美元的预测地平线。我们使用在质量框架中心中定义的单个刚体动态模型,以提高计算效率。在仿真中,测试NMPC以横穿一组不同尺寸的托盘,走进V形烟囱,并在崎岖的地形上招揽。在真实实验中,我们展示了我们的NMPC与移动功能的有效性,使IIT为87美元\,\ Mathrm {kg} $四分之一的机器人HIQ,以实现平坦地形上的全方位步行,横穿静态托盘,并适应在散步期间重新定位托盘。
translated by 谷歌翻译
Legged robots pose one of the greatest challenges in robotics. Dynamic and agile maneuvers of animals cannot be imitated by existing methods that are crafted by humans. A compelling alternative is reinforcement learning, which requires minimal craftsmanship and promotes the natural evolution of a control policy. However, so far, reinforcement learning research for legged robots is mainly limited to simulation, and only few and comparably simple examples have been deployed on real systems. The primary reason is that training with real robots, particularly with dynamically balancing systems, is complicated and expensive. In the present work, we report a new method for training a neural network policy in simulation and transferring it to a state-of-the-art legged system, thereby we leverage fast, automated, and cost-effective data generation schemes. The approach is applied to the ANYmal robot, a sophisticated medium-dog-sized quadrupedal system. Using policies trained in simulation, the quadrupedal machine achieves locomotion skills that go beyond what had been achieved with prior methods: ANYmal is capable of precisely and energy-efficiently following high-level body velocity commands, running faster than ever before, and recovering from falling even in complex configurations.
translated by 谷歌翻译
腿部运动的最新进展使四足动物在具有挑战性的地形上行走。但是,两足机器人本质上更加不稳定,因此很难为其设计步行控制器。在这项工作中,我们利用了对机车控制的快速适应的最新进展,并将其扩展到双皮亚机器人。与现有作品类似,我们从基本策略开始,该策略在将适应模块的输入中作为输入作为输入。该外部媒介包含有关环境的信息,并使步行控制器能够快速在线适应。但是,外部估计器可能是不完善的,这可能导致基本政策的性能不佳,这预计是一个完美的估计器。在本文中,我们提出了A-RMA(Adapting RMA),该A-RMA(适应RMA)还通过使用无模型RL对其进行了鉴定,从而适应了不完美的外部外部估计器的基本策略。我们证明,A-RMA在仿真中胜过许多基于RL的基线控制器和基于模型的控制器,并显示了单个A-RMA策略的零拍摄部署,以使双皮德机器人Cassie能够在各种各样的现实世界中的不同场景超出了培训期间所见。 https://ashish-kmr.github.io/a-rma/的视频和结果
translated by 谷歌翻译
模型预测控制(MPC)是控制机器人的流行策略,但由于混合动力学的复杂性质,很难接触系统。为了实现具有联系的系统,动态模型通常被简化或及时固定,以便有效地计划轨迹。在这项工作中,我们将混合迭代线性二次调节器扩展到以MPC方式(HILQR MPC)工作的1)通过1)修改触点模式时如何计算成本函数,2)在模拟刚体动态和3时使用并行处理。 )使用刚体动力学的有效分析衍生化计算。结果是一个可以修改参考行为的接触顺序并凝聚力计划的系统 - 在处理大型扰动时至关重要。 HILQR MPC在两个系统上进行了测试:首先,在简单的驱动弹跳球混合系统上验证了混合成本修改。然后将HILQR MPC与在四倍的机器人(Unitree A1)上使用质心动态假设的方法进行比较。 HILQR MPC在模拟和硬件测试中的表现优于质心方法。
translated by 谷歌翻译