动态网络嵌入(DNE)最近引起了相当大的关注,因为网络嵌入了各种领域的网络和许多真实网络的动态性质。对于DNE的输入动态网络通常被认为对快照具有平滑的变化,但是不会对所有现实情景保持一致。询问现有的DNE方法是否可以对输入动态网络表现良好,而不会平滑变化是很自然的。为了量化它,建议索引称为更改程度(文档),以便较小的文档表示更平滑的变化。我们的比较研究表明,即使相应的输入动态网络来自同一数据集,几种DNE方法也不足够强大到不同的文档,这将使这些方法不可靠,并且难以用于未知的现实应用程序。为提出有效且更强大的DNE方法,我们遵循集合的概念,其中每个基础学习者采用增量跳过嵌入模型。为了进一步提高性能,简单但有效的策略旨在通过捕获不同级别的本地 - 全局拓扑来增强每个时间步骤的基本学习者之间的多样性。广泛的实验表明,与最先进的DNE方法相比,该方法的卓越有效性和稳健性,以及在所提出的方法及其可扩展性中的特殊设计的益处。
translated by 谷歌翻译
学习在动态环境中网络的低维拓扑表示由于许多真实网络的时间不断发展而引起了很多关注。动态网络嵌入(DNE)的主要和共同目标是有效更新节点嵌入品,同时在每次步骤保留网络拓扑时。大多数现有DNE方法的想法是捕获受影响的节点(而不是所有节点)的拓扑变化,并因此更新节点嵌入。遗憾的是,这种近似虽然可以提高效率,但是在每次步骤中不能有效地保留动态网络的全局拓扑,因为没有考虑通过高阶接近传播的累积拓扑变化的非活动子网。为了解决这一挑战,我们提出了一种新颖的节点选择策略,以在网络上多移地选择代表节点,这与基于Skip-gram的嵌入方法的新增量学习范例协调。广泛的实验显示Glodyne,较小的节点部分被选中,可以实现优越或相当的性能W.R.T.在三个典型的下游任务中最先进的DNE方法。特别是,Glodyne显着优于图形重建任务中的其他方法,这表明了其全球拓扑保存能力。源代码可在https://github.com/houchengbin/glodyne获得
translated by 谷歌翻译
图表表示学习是一种快速增长的领域,其中一个主要目标是在低维空间中产生有意义的图形表示。已经成功地应用了学习的嵌入式来执行各种预测任务,例如链路预测,节点分类,群集和可视化。图表社区的集体努力提供了数百种方法,但在所有评估指标下没有单一方法擅长,例如预测准确性,运行时间,可扩展性等。该调查旨在通过考虑算法来评估嵌入方法的所有主要类别的图表变体,参数选择,可伸缩性,硬件和软件平台,下游ML任务和多样化数据集。我们使用包含手动特征工程,矩阵分解,浅神经网络和深图卷积网络的分类法组织了图形嵌入技术。我们使用广泛使用的基准图表评估了节点分类,链路预测,群集和可视化任务的这些类别算法。我们在Pytorch几何和DGL库上设计了我们的实验,并在不同的多核CPU和GPU平台上运行实验。我们严格地审查了各种性能指标下嵌入方法的性能,并总结了结果。因此,本文可以作为比较指南,以帮助用户选择最适合其任务的方法。
translated by 谷歌翻译
时间图代表实体之间的动态关系,并发生在许多现实生活中的应用中,例如社交网络,电子商务,通信,道路网络,生物系统等。他们需要根据其生成建模和表示学习的研究超出与静态图有关的研究。在这项调查中,我们全面回顾了近期针对处理时间图提出的神经时间依赖图表的学习和生成建模方法。最后,我们确定了现有方法的弱点,并讨论了我们最近发表的论文提格的研究建议[24]。
translated by 谷歌翻译
一组广泛建立的无监督节点嵌入方法可以解释为由两个独特的步骤组成:i)基于兴趣图的相似性矩阵的定义,然后是II)ii)该矩阵的明确或隐式因素化。受这个观点的启发,我们提出了框架的两个步骤的改进。一方面,我们建议根据自由能距离编码节点相似性,该自由能距离在最短路径和通勤时间距离之间进行了插值,从而提供了额外的灵活性。另一方面,我们根据损耗函数提出了一种基质分解方法,该方法将Skip-Gram模型的损失函数推广到任意相似性矩阵。与基于广泛使用的$ \ ell_2 $损失的因素化相比,该方法可以更好地保留与较高相似性分数相关的节点对。此外,它可以使用高级自动分化工具包轻松实现,并通过利用GPU资源进行有效计算。在现实世界数据集上的节点聚类,节点分类和链接预测实验证明了与最先进的替代方案相比,合并基于自由能的相似性以及所提出的矩阵分解的有效性。
translated by 谷歌翻译
Clustering is a fundamental problem in network analysis that finds closely connected groups of nodes and separates them from other nodes in the graph, while link prediction is to predict whether two nodes in a network are likely to have a link. The definition of both naturally determines that clustering must play a positive role in obtaining accurate link prediction tasks. Yet researchers have long ignored or used inappropriate ways to undermine this positive relationship. In this article, We construct a simple but efficient clustering-driven link prediction framework(ClusterLP), with the goal of directly exploiting the cluster structures to obtain connections between nodes as accurately as possible in both undirected graphs and directed graphs. Specifically, we propose that it is easier to establish links between nodes with similar representation vectors and cluster tendencies in undirected graphs, while nodes in a directed graphs can more easily point to nodes similar to their representation vectors and have greater influence in their own cluster. We customized the implementation of ClusterLP for undirected and directed graphs, respectively, and the experimental results using multiple real-world networks on the link prediction task showed that our models is highly competitive with existing baseline models. The code implementation of ClusterLP and baselines we use are available at https://github.com/ZINUX1998/ClusterLP.
translated by 谷歌翻译
在低维空间中节点的学习表示是一项至关重要的任务,在网络分析中具有许多有趣的应用,包括链接预测,节点分类和可视化。解决此问题的两种流行方法是矩阵分解和基于步行的随机模型。在本文中,我们旨在将两全其美的最好的人融合在一起,以学习节点表示。特别是,我们提出了一个加权矩阵分解模型,该模型编码有关网络节点的随机步行信息。这种新颖的表述的好处是,它使我们能够利用内核函数,而无需意识到确切的接近矩阵,从而增强现有矩阵分解方法的表达性,并减轻其计算复杂性。我们通过多个内核学习公式扩展了方法,该公式提供了学习内核作为以数据驱动方式的词典的线性组合的灵活性。我们在现实世界网络上执行经验评估,表明所提出的模型优于基线节点嵌入下游机器学习任务中的算法。
translated by 谷歌翻译
图嵌入方法旨在通过将节点映射到低维矢量空间来查找有用的图表。这是一项具有重要下游应用程序的任务,例如链接预测,图形重建,数据可视化,节点分类和语言建模。近年来,图形嵌入领域见证了从线性代数方法转向基于局部的优化方法,结合了随机步行和深神经网络,以解决嵌入大图的问题。但是,尽管优化工具有所改进,但图形嵌入方法仍然是一般设计的,以忽略现实生活网络的特殊性的方式。确实,近年来,理解和建模复杂的现实生活网络取得了重大进展。但是,获得的结果对嵌入算法的发展产生了很小的影响。本文旨在通过设计一种图形嵌入方法来解决此问题,该方法利用网络科学领域的最新有价值的见解。更确切地说,我们基于普及性相似性和局部吸引力范例提出了一种新颖的图形嵌入方法。我们在大量现实生活网络上评估了在链接预测任务上提出的方法的性能。我们使用广泛的实验分析表明,所提出的方法优于嵌入算法的最先进的图。我们还证明了它对数据稀缺性和嵌入维度的选择的稳健性。
translated by 谷歌翻译
网络表示学习(NRL)方法在过去几年中受到了重大关注,因此由于它们在几个图形分析问题中的成功,包括节点分类,链路预测和聚类。这种方法旨在以一种保留网络的结构信息的方式将网络的每个顶点映射到低维空间中。特别感兴趣的是基于随机行走的方法;这些方法将网络转换为节点序列的集合,旨在通过预测序列内每个节点的上下文来学习节点表示。在本文中,我们介绍了一种通用框架,以增强通过基于主题信息的随机行走方法获取的节点的嵌入。类似于自然语言处理中局部单词嵌入的概念,所提出的模型首先将每个节点分配给潜在社区,并有利于各种统计图模型和社区检测方法,然后了解增强的主题感知表示。我们在两个下游任务中评估我们的方法:节点分类和链路预测。实验结果表明,通过纳入节点和社区嵌入,我们能够以广泛的广泛的基线NRL模型表明。
translated by 谷歌翻译
图形结构化数据通常在自然界中具有动态字符,例如,在许多现实世界中,链接和节点的添加。近年来见证了对这种图形数据进行建模的动态图神经网络所支付的越来越多的注意力,几乎所有现有方法都假设,当建立新的链接时,应通过学习时间动态来传播邻居节点的嵌入。新的信息。但是,这种方法遭受了这样的限制,如果新连接引入的节点包含嘈杂的信息,那么将其知识传播到其他节点是不可靠的,甚至导致模型崩溃。在本文中,我们提出了Adanet:通过增强动态图神经网络的强化知识适应框架。与以前的方法相反,一旦添加了新链接,就立即更新邻居节点的嵌入方式,Adanet试图自适应地确定由于涉及的新链接而应更新哪些节点。考虑到是否更新一个邻居节点的嵌入的决定将对其他邻居节点产生很大的影响,因此,我们将节点更新的选择作为序列决策问题,并通过强化学习解决此问题。通过这种方式,我们可以将知识自适应地传播到其他节点,以学习健壮的节点嵌入表示。据我们所知,我们的方法构成了通过强化学习的动态图神经网络来探索强大知识适应的首次尝试。在三个基准数据集上进行的广泛实验表明,Adanet可以实现最新的性能。此外,我们通过在数据集中添加不同程度的噪声来执行实验,并定量和定性地说明ADANET的鲁棒性。
translated by 谷歌翻译
Deep learning has been shown to be successful in a number of domains, ranging from acoustics, images, to natural language processing. However, applying deep learning to the ubiquitous graph data is non-trivial because of the unique characteristics of graphs. Recently, substantial research efforts have been devoted to applying deep learning methods to graphs, resulting in beneficial advances in graph analysis techniques. In this survey, we comprehensively review the different types of deep learning methods on graphs. We divide the existing methods into five categories based on their model architectures and training strategies: graph recurrent neural networks, graph convolutional networks, graph autoencoders, graph reinforcement learning, and graph adversarial methods. We then provide a comprehensive overview of these methods in a systematic manner mainly by following their development history. We also analyze the differences and compositions of different methods. Finally, we briefly outline the applications in which they have been used and discuss potential future research directions.
translated by 谷歌翻译
图表是一个宇宙数据结构,广泛用于组织现实世界中的数据。像交通网络,社交和学术网络这样的各种实际网络网络可以由图表代表。近年来,目睹了在网络中代表顶点的快速发展,进入低维矢量空间,称为网络表示学习。表示学习可以促进图形数据上的新算法的设计。在本调查中,我们对网络代表学习的当前文献进行了全面审查。现有算法可以分为三组:浅埋模型,异构网络嵌入模型,图形神经网络的模型。我们为每个类别审查最先进的算法,并讨论这些算法之间的基本差异。调查的一个优点是,我们系统地研究了不同类别的算法底层的理论基础,这提供了深入的见解,以更好地了解网络表示学习领域的发展。
translated by 谷歌翻译
Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into four categories, namely recurrent graph neural networks, convolutional graph neural networks, graph autoencoders, and spatial-temporal graph neural networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes, benchmark data sets, and model evaluation of graph neural networks. Finally, we propose potential research directions in this rapidly growing field.
translated by 谷歌翻译
Graph learning is a popular approach for performing machine learning on graph-structured data. It has revolutionized the machine learning ability to model graph data to address downstream tasks. Its application is wide due to the availability of graph data ranging from all types of networks to information systems. Most graph learning methods assume that the graph is static and its complete structure is known during training. This limits their applicability since they cannot be applied to problems where the underlying graph grows over time and/or new tasks emerge incrementally. Such applications require a lifelong learning approach that can learn the graph continuously and accommodate new information whilst retaining previously learned knowledge. Lifelong learning methods that enable continuous learning in regular domains like images and text cannot be directly applied to continuously evolving graph data, due to its irregular structure. As a result, graph lifelong learning is gaining attention from the research community. This survey paper provides a comprehensive overview of recent advancements in graph lifelong learning, including the categorization of existing methods, and the discussions of potential applications and open research problems.
translated by 谷歌翻译
随着对比学习的兴起,无人监督的图形表示学习最近一直蓬勃发展,甚至超过了一些机器学习任务中的监督对应物。图表表示的大多数对比模型学习侧重于最大化本地和全局嵌入之间的互信息,或主要取决于节点级别的对比嵌入。然而,它们仍然不足以全面探索网络拓扑的本地和全球视图。虽然前者认为本地全球关系,但其粗略的全球信息导致本地和全球观点之间的思考。后者注重节点级别对齐,以便全局视图的作用出现不起眼。为避免落入这两个极端情况,我们通过对比群集分配来提出一种新颖的无监督图形表示模型,称为GCCA。通过组合聚类算法和对比学习,它有动力综合利用本地和全球信息。这不仅促进了对比效果,而且还提供了更高质量的图形信息。同时,GCCA进一步挖掘群集级信息,这使得它能够了解除了图形拓扑之外的节点之间的难以捉摸的关联。具体地,我们首先使用不同的图形增强策略生成两个增强的图形,然后使用聚类算法分别获取其群集分配和原型。所提出的GCCA进一步强制不同增强图中的相同节点来通过最小化交叉熵损失来互相识别它们的群集分配。为了展示其有效性,我们将在三个不同的下游任务中与最先进的模型进行比较。实验结果表明,GCCA在大多数任务中具有强大的竞争力。
translated by 谷歌翻译
This paper studies the problem of embedding very large information networks into low-dimensional vector spaces, which is useful in many tasks such as visualization, node classification, and link prediction. Most existing graph embedding methods do not scale for real world information networks which usually contain millions of nodes. In this paper, we propose a novel network embedding method called the "LINE," which is suitable for arbitrary types of information networks: undirected, directed, and/or weighted. The method optimizes a carefully designed objective function that preserves both the local and global network structures. An edge-sampling algorithm is proposed that addresses the limitation of the classical stochastic gradient descent and improves both the effectiveness and the efficiency of the inference. Empirical experiments prove the effectiveness of the LINE on a variety of real-world information networks, including language networks, social networks, and citation networks. The algorithm is very efficient, which is able to learn the embedding of a network with millions of vertices and billions of edges in a few hours on a typical single machine. The source code of the LINE is available online. 1
translated by 谷歌翻译
Traditional network embedding primarily focuses on learning a continuous vector representation for each node, preserving network structure and/or node content information, such that off-the-shelf machine learning algorithms can be easily applied to the vector-format node representations for network analysis. However, the learned continuous vector representations are inefficient for large-scale similarity search, which often involves finding nearest neighbors measured by distance or similarity in a continuous vector space. In this paper, we propose a search efficient binary network embedding algorithm called BinaryNE to learn a binary code for each node, by simultaneously modeling node context relations and node attribute relations through a three-layer neural network. BinaryNE learns binary node representations through a stochastic gradient descent based online learning algorithm. The learned binary encoding not only reduces memory usage to represent each node, but also allows fast bit-wise comparisons to support faster node similarity search than using Euclidean distance or other distance measures. Extensive experiments and comparisons demonstrate that BinaryNE not only delivers more than 25 times faster search speed, but also provides comparable or better search quality than traditional continuous vector based network embedding methods. The binary codes learned by BinaryNE also render competitive performance on node classification and node clustering tasks. The source code of this paper is available at https://github.com/daokunzhang/BinaryNE.
translated by 谷歌翻译
异质图卷积网络在解决异质网络数据的各种网络分析任务方面已广受欢迎,从链接预测到节点分类。但是,大多数现有作品都忽略了多型节点之间的多重网络的关系异质性,而在元路径中,元素嵌入中关系的重要性不同,这几乎无法捕获不同关系跨不同关系的异质结构信号。为了应对这一挑战,这项工作提出了用于异质网络嵌入的多重异质图卷积网络(MHGCN)。我们的MHGCN可以通过多层卷积聚合自动学习多重异质网络中不同长度的有用的异质元路径相互作用。此外,我们有效地将多相关结构信号和属性语义集成到学习的节点嵌入中,并具有无监督和精选的学习范式。在具有各种网络分析任务的五个现实世界数据集上进行的广泛实验表明,根据所有评估指标,MHGCN与最先进的嵌入基线的优势。
translated by 谷歌翻译
最近,图神经网络显示了建模基于网络的推荐系统中复杂拓扑结构的优势。由于节点之间的各种相互作用以及来自各种类型的节点和边缘的大量语义,因此在多重异质网络中学习表达性节点表示的研究兴趣爆发。推荐系统中最重要的任务之一是预测特定边缘类型下两个节点之间的潜在连接(即关系)。尽管现有的研究利用明确的元数据来汇总邻居,但实际上,它们仅考虑了关系内部的元数据,因此无法通过相互关联信息来利用潜在的提升。此外,在各种关系下,尤其是在越来越多的节点和边缘类型的情况下,全面利用相互关系的元数据并不总是直接的。此外,两个节点之间不同关系的贡献很难衡量。为了应对挑战,我们提出了Hybridgnn,这是一种具有混合聚集流和分层的端到端GNN模型,以在多路复用方案中充分利用异质性。具体而言,Hybridgnn应用了一个随机的关系探索模块来利用不同关系之间的多重性属性。然后,我们的模型利用在关系内的元数据和随机探索下的混合聚集流以学习丰富的语义。为了探索不同聚合流的重要性并利用多重性属性,我们提出了一个新型的分层注意模块,该模块既利用了Metapath级别的注意力和关系级的关注。广泛的实验结果表明,与几个最先进的基线相比,Hybridgnn取得了最佳性能。
translated by 谷歌翻译
Graph is an important data representation which appears in a wide diversity of real-world scenarios. Effective graph analytics provides users a deeper understanding of what is behind the data, and thus can benefit a lot of useful applications such as node classification, node recommendation, link prediction, etc. However, most graph analytics methods suffer the high computation and space cost. Graph embedding is an effective yet efficient way to solve the graph analytics problem. It converts the graph data into a low dimensional space in which the graph structural information and graph properties are maximumly preserved. In this survey, we conduct a comprehensive review of the literature in graph embedding. We first introduce the formal definition of graph embedding as well as the related concepts. After that, we propose two taxonomies of graph embedding which correspond to what challenges exist in different graph embedding problem settings and how the existing work address these challenges in their solutions. Finally, we summarize the applications that graph embedding enables and suggest four promising future research directions in terms of computation efficiency, problem settings, techniques and application scenarios.
translated by 谷歌翻译