In natural phenomena, data distributions often deviate from normality. One can think of cataclysms as a self-explanatory example: events that occur almost never, and at the same time are many standard deviations away from the common outcome. In many scientific contexts it is exactly these tail events that researchers are most interested in anticipating, so that adequate measures can be taken to prevent or attenuate a major impact on society. Despite such efforts, we have yet to provide definite answers to crucial issues in evaluating predictive solutions in domains such as weather, pollution, health. In this paper, we deal with two encapsulated problems simultaneously. First, assessing the performance of regression models when non-uniform preferences apply - not all values are equally relevant concerning the accuracy of their prediction, and there's a particular interest in the most extreme values. Second, assessing the robustness of models when dealing with uncertainty regarding the actual underlying distribution of values relevant for such problems. We show how different levels of relevance associated with target values may impact experimental conclusions, and demonstrate the practical utility of the proposed methods.
translated by 谷歌翻译
不平衡的域学习旨在在预测虽然不足的实例中产生准确的模型,但对于该域而言至关重要。该领域的研究主要集中在分类任务上。相比之下,在回归任务的背景下进行的研究数量可以忽略不计。造成这种情况的主要原因之一是缺乏能够专注于最小化极端值误差的损失函数。最近,引入了评估指标:平方错误相关区域(SERA)。该度量标准更加重视在极端值下的错误,同时还考虑了整个目标变量域中的性能,从而防止了严重的偏见。但是,其作为优化度量的有效性尚不清楚。在本文中,我们的目标是研究使用血清作为不平衡回归任务的优化标准的影响。使用梯度增强算法作为概念证明,我们对36个不同域和大小的数据集进行了实验研究。结果表明,使用血清作为目标函数的模型实际上比在极端值的预测中相应的标准增强算法所产生的模型更好。这证实了血清可以作为损失函数嵌入到基于优化的学习算法中,以实现不平衡的回归方案。
translated by 谷歌翻译
机器学习(ML)应用程序的数据量不断增长。不仅是观察的数量,特别是测量变量的数量(特征)增加了持续的数字化。选择最适合预测建模的功能是ML在商业和研究中取得成功的重要杠杆。特征选择方法(FSM)独立于某种ML算法 - 所谓的过滤方法 - 已毫无意义地建议,但研究人员和定量建模的指导很少,以选择典型ML问题的适当方法。本次审查在特征选择基准上综合了大量文献,并评估了58种方法在广泛使用的R环境中的性能。对于具体的指导,我们考虑了四种典型的数据集方案,这些情况挑战ML模型(嘈杂,冗余,不平衡数据和具有比观察特征更多的案例)。绘制早期基准的经验,该基准测试较少的FSMS,我们根据四个标准进行比较方法的性能(预测性能,所选的相关功能数,功能集和运行时的稳定性)。我们发现依赖于随机森林方法的方法,双输入对称相关滤波器(浪费)和联合杂质滤波器(Jim)是给定的数据集方案的良好性候选方法。
translated by 谷歌翻译
We can protect user data privacy via many approaches, such as statistical transformation or generative models. However, each of them has critical drawbacks. On the one hand, creating a transformed data set using conventional techniques is highly time-consuming. On the other hand, in addition to long training phases, recent deep learning-based solutions require significant computational resources. In this paper, we propose PrivateSMOTE, a technique designed for competitive effectiveness in protecting cases at maximum risk of re-identification while requiring much less time and computational resources. It works by synthetic data generation via interpolation to obfuscate high-risk cases while minimizing data utility loss of the original data. Compared to multiple conventional and state-of-the-art privacy-preservation methods on 20 data sets, PrivateSMOTE demonstrates competitive results in re-identification risk. Also, it presents similar or higher predictive performance than the baselines, including generative adversarial networks and variational autoencoders, reducing their energy consumption and time requirements by a minimum factor of 9 and 12, respectively.
translated by 谷歌翻译
尽管机器学习方法已在金融领域广泛使用,但在非常成功的学位上,这些方法仍然可以根据解释性,可比性和可重复性来定制特定研究和不透明。这项研究的主要目的是通过提供一种通用方法来阐明这一领域,该方法是调查 - 不合Snostic且可解释给金融市场从业人员,从而提高了其效率,降低了进入的障碍,并提高了实验的可重复性。提出的方法在两个自动交易平台组件上展示。也就是说,价格水平,众所周知的交易模式和一种新颖的2步特征提取方法。该方法依赖于假设检验,该假设检验在其他社会和科学学科中广泛应用,以有效地评估除简单分类准确性之外的具体结果。提出的主要假设是为了评估所选的交易模式是否适合在机器学习设置中使用。在整个实验中,我们发现在机器学习设置中使用所考虑的交易模式仅由统计数据得到部分支持,从而导致效果尺寸微不足道(反弹7- $ 0.64 \ pm 1.02 $,反弹11 $ 0.38 \ pm 0.98 $,并且篮板15- $ 1.05 \ pm 1.16 $),但允许拒绝零假设。我们展示了美国期货市场工具上的通用方法,并提供了证据表明,通过这种方法,我们可以轻松获得除传统绩效和盈利度指标之外的信息指标。这项工作是最早将这种严格的统计支持方法应用于金融市场领域的工作之一,我们希望这可能是更多研究的跳板。
translated by 谷歌翻译
无论是在功能选择的领域还是可解释的AI领域,都有基于其重要性的“排名”功能的愿望。然后可以将这种功能重要的排名用于:(1)减少数据集大小或(2)解释机器学习模型。但是,在文献中,这种特征排名没有以系统的,一致的方式评估。许多论文都有不同的方式来争论哪些具有重要性排名最佳的特征。本文通过提出一种新的评估方法来填补这一空白。通过使用合成数据集,可以事先知道特征重要性得分,从而可以进行更系统的评估。为了促进使用新方法的大规模实验,在Python建造了一个名为FSEVAL的基准测定框架。该框架允许并行运行实验,并在HPC系统上的计算机上分布。通过与名为“权重和偏见”的在线平台集成,可以在实时仪表板上进行交互探索图表。该软件作为开源软件发布,并在PYPI平台上以包裹发行。该研究结束时,探索了一个这样的大规模实验,以在许多方面找到参与算法的优势和劣势。
translated by 谷歌翻译
超参数优化构成了典型的现代机器学习工作流程的很大一部分。这是由于这样一个事实,即机器学习方法和相应的预处理步骤通常只有在正确调整超参数时就会产生最佳性能。但是在许多应用中,我们不仅有兴趣仅仅为了预测精度而优化ML管道;确定最佳配置时,必须考虑其他指标或约束,从而导致多目标优化问题。由于缺乏知识和用于多目标超参数优化的知识和容易获得的软件实现,因此通常在实践中被忽略。在这项工作中,我们向读者介绍了多个客观超参数优化的基础知识,并激励其在应用ML中的实用性。此外,我们从进化算法和贝叶斯优化的领域提供了现有优化策略的广泛调查。我们说明了MOO在几个特定ML应用中的实用性,考虑了诸如操作条件,预测时间,稀疏,公平,可解释性和鲁棒性之类的目标。
translated by 谷歌翻译
开发了一种使用多个辅助变量的非静止空间建模算法。它将Geodatistics与Simitile随机林结合起来,以提供一种新的插值和随机仿真算法。本文介绍了该方法,并表明它具有与施加地统计学建模和定量随机森林的那些相似的一致性结果。该方法允许嵌入更简单的插值技术,例如Kriging,以进一步调节模型。该算法通过估计每个目标位置处的目标变量的条件分布来工作。这种分布的家庭称为目标变量的包络。由此,可以获得空间估计,定量和不确定性。还开发了一种从包络产生条件模拟的算法。随着它们从信封中的样本,因此通过相对变化的次要变量,趋势和可变性的相对变化局部地影响。
translated by 谷歌翻译
尽管机器学习取得了巨大进步(ML),但数据不平衡的培训仍然在许多现实世界中构成挑战。在解决此问题的一系列不同技术中,采样算法被视为有效的解决方案。但是,问题更为根本,许多作品强调了实例硬度的重要性。这个问题是指管理不安全或可能嘈杂的实例的重要性,这些实例更可能被错误分类并作为分类绩效不佳的根本原因。本文介绍了Hardvis,这是一种视觉分析系统,旨在处理实例硬度,主要在分类场景中。我们提出的系统协助用户在视觉上比较数据类型的不同分布,根据局部特征选择实例类型,这些实例后来将受主动采样方法的影响,并验证来自底漆或过采样技术的建议对ML模型有益。此外,我们允许用户找到和采样轻松且难以对所有课程的培训实例进行分类,而不是统一地采样/过采样。用户可以从不同角度探索数据子集以决定所有这些参数,而HardVis则跟踪其步骤并评估模型在测试集中分别评估模型的预测性能。最终结果是一个均衡的数据集,可增强ML模型的预测能力。通过假设使用情况和用例证明了Hardvis的功效和有效性。最后,我们还研究了系统的有用,基于我们从ML专家那里收到的反馈。
translated by 谷歌翻译
决策支持系统在农业领域越来越受欢迎。随着自动化机器学习的发展,农业专家现在能够使用切削刃机器学习(ML)模型来培训,评估和做出预测,而无需大得多。虽然这种自动化方法导致了许多情况下的成功结果,但在某些情况下(例如,当有很多标记的数据集可用时)选择具有类似性能度量的不同模型中是一项艰巨的任务。此外,这些系统通常不允许用户纳入其域知识,这些域知识可以促进模型选择的任务,并深入了解最终决策的预测系统。为了解决这些问题,在本文中,我们展示了一种视觉支持系统,允许域专家更好地理解,诊断和比较不同的回归模型,主要是通过丰富具有域知识的模型不可知的解释。为了验证AHMOSE,我们描述了葡萄栽培领域的用例场景,葡萄质量预测,系统使用户能够诊断和选择更好的预测模型。我们还讨论了关于ML和葡萄栽培专家的工具设计的反馈。
translated by 谷歌翻译
大多数机器学习算法由一个或多个超参数配置,必须仔细选择并且通常会影响性能。为避免耗时和不可递销的手动试验和错误过程来查找性能良好的超参数配置,可以采用各种自动超参数优化(HPO)方法,例如,基于监督机器学习的重新采样误差估计。本文介绍了HPO后,本文审查了重要的HPO方法,如网格或随机搜索,进化算法,贝叶斯优化,超带和赛车。它给出了关于进行HPO的重要选择的实用建议,包括HPO算法本身,性能评估,如何将HPO与ML管道,运行时改进和并行化结合起来。这项工作伴随着附录,其中包含关于R和Python的特定软件包的信息,以及用于特定学习算法的信息和推荐的超参数搜索空间。我们还提供笔记本电脑,这些笔记本展示了这项工作的概念作为补充文件。
translated by 谷歌翻译
预测组合在预测社区中蓬勃发展,近年来,已经成为预测研究和活动主流的一部分。现在,由单个(目标)系列产生的多个预测组合通过整合来自不同来源收集的信息,从而提高准确性,从而减轻了识别单个“最佳”预测的风险。组合方案已从没有估计的简单组合方法演变为涉及时间变化的权重,非线性组合,组件之间的相关性和交叉学习的复杂方法。它们包括结合点预测和结合概率预测。本文提供了有关预测组合的广泛文献的最新评论,并参考可用的开源软件实施。我们讨论了各种方法的潜在和局限性,并突出了这些思想如何随着时间的推移而发展。还调查了有关预测组合实用性的一些重要问题。最后,我们以当前的研究差距和未来研究的潜在见解得出结论。
translated by 谷歌翻译
该文档简要概述了使用机器学习技术时发生的一些常见错误,以及可以采取什么措施来避免它们。它主要是为研究学生提供指南,并专注于学术研究中特别关注的问题,例如需要进行严格的比较并得出有效的结论。它涵盖了机器学习过程的五个阶段:模型构建之前该做什么,如何可靠地构建模型,如何进行健身评估模型,如何公平地比较模型以及如何报告结果。
translated by 谷歌翻译
在过去几十年中,已经提出了各种方法,用于估计回归设置中的预测间隔,包括贝叶斯方法,集合方法,直接间隔估计方法和保形预测方法。重要问题是这些方法的校准:生成的预测间隔应该具有预定义的覆盖水平,而不会过于保守。在这项工作中,我们从概念和实验的角度审查上述四类方法。结果来自各个域的基准数据集突出显示从一个数据集中的性能的大波动。这些观察可能归因于违反某些类别的某些方法所固有的某些假设。我们说明了如何将共形预测用作提供不具有校准步骤的方法的方法的一般校准程序。
translated by 谷歌翻译
剪切粘度虽然是所有液体的基本特性,但在计算上估计分子动力学模拟的计算昂贵。最近,机器学习(ML)方法已被用于在许多情况下增强分子模拟,从而显示出以相对廉价的方式估算粘度的希望。但是,ML方法面临重大挑战,例如当数据集的大小很小时,粘度也很小。在这项工作中,我们训练多个ML模型,以预测Lennard-Jones(LJ)流体的剪切粘度,特别强调解决由小型数据集引起的问题。具体而言,研究了与模型选择,绩效估计和不确定性定量有关的问题。首先,我们表明使用单个看不见的数据集的广泛使用的性能估计步骤显示了小数据集的广泛可变性。在这种情况下,可以使用交叉验证(CV)选择超参数(模型选择)的常见实践,以估算概括误差(性能估计)。我们比较了两个简单的简历程序,以便他们同时选择模型选择和性能估计的能力,并发现基于K折CV的过程显示出较低的误差估计差异。我们讨论绩效指标在培训和评估中的作用。最后,使用高斯工艺回归(GPR)和集合方法来估计单个预测的不确定性。 GPR的不确定性估计还用于构建适用性域,使用ML模型对本工作中生成的另一个小数据集提供了更可靠的预测。总体而言,这项工作中规定的程序共同导致了针对小型数据集的强大ML模型。
translated by 谷歌翻译
机器学习(ML)越来越多地用于支持高风险的决策,这是由于其相对于人类评估的优势预测能力的承诺而欠的趋势。但是,决策目标与观察到的作为训练ML模型的标签的结果中捕获的内容之间经常存在差距。结果,机器学习模型可能无法捕获决策标准的重要维度,从而阻碍了他们的决策支持。在这项工作中,我们探讨了历史专家决策作为组织信息系统中通常可用的丰富(但不完美)的信息来源,并表明它可以利用它来弥合决策目标与算法目标之间的差距。当数据中的每个案例都由单个专家评估并提出基于影响函数的方法作为解决此问题的解决方案时,我们会间接考虑估计专家一致性的问题。然后,我们将估计的专家一致性通过培训时间标签合并方法纳入预测模型。这种方法使ML模型可以在有推断的专家一致性和观察标签的情况下向专家学习。我们还提出了通过混合和延期模型来利用推断一致性的替代方法。在我们的经验评估中,专注于儿童虐待热线筛查的背景下,我们表明(1)有一些高风险案例,其风险是专家考虑的,但在目标标签中没有完全捕获用于培训已部署模型和培训的目标标签(2)提出的方法可显着提高这些情况的精度。
translated by 谷歌翻译
The cyber-physical convergence is opening up new business opportunities for industrial operators. The need for deep integration of the cyber and the physical worlds establishes a rich business agenda towards consolidating new system and network engineering approaches. This revolution would not be possible without the rich and heterogeneous sources of data, as well as the ability of their intelligent exploitation, mainly due to the fact that data will serve as a fundamental resource to promote Industry 4.0. One of the most fruitful research and practice areas emerging from this data-rich, cyber-physical, smart factory environment is the data-driven process monitoring field, which applies machine learning methodologies to enable predictive maintenance applications. In this paper, we examine popular time series forecasting techniques as well as supervised machine learning algorithms in the applied context of Industry 4.0, by transforming and preprocessing the historical industrial dataset of a packing machine's operational state recordings (real data coming from the production line of a manufacturing plant from the food and beverage domain). In our methodology, we use only a single signal concerning the machine's operational status to make our predictions, without considering other operational variables or fault and warning signals, hence its characterization as ``agnostic''. In this respect, the results demonstrate that the adopted methods achieve a quite promising performance on three targeted use cases.
translated by 谷歌翻译
在2015年和2019年之间,地平线的成员2020年资助的创新培训网络名为“Amva4newphysics”,研究了高能量物理问题的先进多变量分析方法和统计学习工具的定制和应用,并开发了完全新的。其中许多方法已成功地用于提高Cern大型Hadron撞机的地图集和CMS实验所执行的数据分析的敏感性;其他几个人,仍然在测试阶段,承诺进一步提高基本物理参数测量的精确度以及新现象的搜索范围。在本文中,在研究和开发的那些中,最相关的新工具以及对其性能的评估。
translated by 谷歌翻译
机器学习(ML)生命周期涉及一系列迭代步骤,从有效的收集和准备数据,包括复杂的特征工程流程,对结果的演示和改进,各种步骤中的各种算法选择。特征工程尤其可以对ML非常有益,导致许多改进,例如提高预测结果,降低计算时间,减少过度噪音,并提高培训期间所采取的决策背后的透明度。尽管如此,虽然存在多个视觉分析工具来监控和控制ML生命周期的不同阶段(特别是与数据和算法相关的阶段),但功能工程支持仍然不足。在本文中,我们提出了FightEnvi,一种专门设计用于协助特征工程过程的视觉分析系统。我们建议的系统可帮助用户选择最重要的功能,将原始功能转换为强大的替代方案,并进行不同的特征生成组合。此外,数据空间切片允许用户探索本地和全局尺度上的功能的影响。 Feationenvi利用多种自动特征选择技术;此外,它目视指导用户有统计证据的关于每个特征的影响(或功能的子集)。最终结果是通过多种验证度量评估的重新设计的重新设计特征。用两种用例和案例研究证明了FeatureenVI的有用性和适用性。我们还向评估我们系统的有效性以及评估我们系统的有效性的观众报告反馈。
translated by 谷歌翻译
如今,人工智能(AI)已成为临床和远程医疗保健应用程序的基本组成部分,但是最佳性能的AI系统通常太复杂了,无法自我解释。可解释的AI(XAI)技术被定义为揭示系统的预测和决策背后的推理,并且在处理敏感和个人健康数据时,它们变得更加至关重要。值得注意的是,XAI并未在不同的研究领域和数据类型中引起相同的关注,尤其是在医疗保健领域。特别是,许多临床和远程健康应用程序分别基于表格和时间序列数据,而XAI并未在这些数据类型上进行分析,而计算机视觉和自然语言处理(NLP)是参考应用程序。为了提供最适合医疗领域表格和时间序列数据的XAI方法的概述,本文提供了过去5年中文献的审查,说明了生成的解释的类型以及为评估其相关性所提供的努力和质量。具体而言,我们确定临床验证,一致性评估,客观和标准化质量评估以及以人为本的质量评估作为确保最终用户有效解释的关键特征。最后,我们强调了该领域的主要研究挑战以及现有XAI方法的局限性。
translated by 谷歌翻译