安全是每个机器人平台的关键特性:任何控制政策始终遵守执行器限制,并避免与环境和人类发生冲突。在加强学习中,安全对于探索环境而不会造成任何损害更为基础。尽管有许多针对安全勘探问题的建议解决方案,但只有少数可以处理现实世界的复杂性。本文介绍了一种安全探索的新公式,用于强化各种机器人任务。我们的方法适用于广泛的机器人平台,即使在通过探索约束歧管的切线空间从数据中学到的复杂碰撞约束下也可以执行安全。我们提出的方法在模拟的高维和动态任务中实现了最先进的表现,同时避免与环境发生冲突。我们在Tiago ++机器人上展示了安全的现实部署,在操纵和人类机器人交互任务中取得了显着的性能。
translated by 谷歌翻译
自主机器人应在现实世界中的动态环境中运行,并与人类在紧密的空间中合作。允许机器人离开结构化实验室和制造设置的关键组成部分是他们与周围世界的在线和实时碰撞评估的能力。基于距离的约束是使机器人计划行动并安全采取行动,保护人类及其硬件的基础。但是,不同的应用需要不同的距离分辨率,从而导致各种启发式方法测量距离场W.R.T.障碍物在计算上很昂贵,并阻碍了他们在动态障碍避免用例中的应用。我们提出了正则签名的距离距离(REDSDF),这是一个单个神经隐式函数,可以在任何规模上计算平滑距离场,并在高维歧管上具有细粒度的分辨率和像人类这样的明确物体,这要归功于我们的有效数据生成和A训练过程中简单的感应偏置。我们证明了我们的方法在共享工作区中的全身控制(WBC)和安全的人类机器人相互作用(HRI)中的代表性模拟任务中的有效性。最后,我们在使用移动操纵器机器人的HRI移交任务中提供了现实世界应用的概念证明。
translated by 谷歌翻译
尽管移动操作在工业和服务机器人技术方面都重要,但仍然是一个重大挑战,因为它需要将最终效应轨迹的无缝整合与导航技能以及对长匹马的推理。现有方法难以控制大型配置空间,并导航动态和未知环境。在先前的工作中,我们建议将移动操纵任务分解为任务空间中最终效果的简化运动生成器,并将移动设备分解为训练有素的强化学习代理,以说明移动基础的运动基础,以说明运动的运动可行性。在这项工作中,我们引入了移动操作的神经导航(n $^2 $ m $^2 $),该导航将这种分解扩展到复杂的障碍环境,并使其能够解决现实世界中的广泛任务。最终的方法可以在未探索的环境中执行看不见的长马任务,同时立即对动态障碍和环境变化做出反应。同时,它提供了一种定义新的移动操作任务的简单方法。我们证明了我们提出的方法在多个运动学上多样化的移动操纵器上进行的广泛模拟和现实实验的能力。代码和视频可在http://mobile-rl.cs.uni-freiburg.de上公开获得。
translated by 谷歌翻译
强化学习表现出巨大的潜力,可以解决复杂的接触率丰富的机器人操纵任务。但是,在现实世界中使用RL的安全是一个关键问题,因为在培训期间或看不见的情况下,RL政策是不完善的,可能会发生意外的危险碰撞。在本文中,我们提出了一个接触安全的增强增强学习框架,用于接触良好的机器人操纵,该框架在任务空间和关节空间中保持安全性。当RL政策导致机器人组与环境之间的意外冲突时,我们的框架能够立即检测到碰撞并确保接触力量很小。此外,最终效应器被强制执行,同时对外部干扰保持强大的态度。我们训练RL政策以模拟并将其转移到真正的机器人中。关于机器人擦拭任务的现实世界实验表明,即使在策略处于看不见的情况下,我们的方法也能够使接触在任务空间和关节空间中保持较小,同时拒绝对主要任务的干扰。
translated by 谷歌翻译
移动操作(MM)系统是在非结构化现实世界环境中扮演个人助理角色的理想候选者。除其他挑战外,MM需要有效协调机器人的实施例,以执行需要移动性和操纵的任务。强化学习(RL)的承诺是将机器人具有自适应行为,但是大多数方法都需要大量的数据来学习有用的控制策略。在这项工作中,我们研究了机器人可及先验在参与者批判性RL方法中的整合,以加速学习和获取任务的MM学习。也就是说,我们考虑了最佳基础位置的问题以及是否激活ARM达到6D目标的后续决定。为此,我们设计了一种新型的混合RL方法,该方法可以共同处理离散和连续的动作,从而诉诸Gumbel-Softmax重新聚集化。接下来,我们使用来自经典方法的操作机器人工作区中的数据训练可及性。随后,我们得出了增强的混合RL(BHYRL),这是一种通过将其建模为残留近似器的总和来学习Q功能的新型算法。每当需要学习新任务时,我们都可以转移我们学到的残差并了解特定于任务的Q功能的组成部分,从而从先前的行为中维护任务结构。此外,我们发现将目标政策与先前的策略正规化产生更多的表达行为。我们评估了我们在达到难度增加和提取任务的模拟方面的方法,并显示了Bhyrl在基线方法上的卓越性能。最后,我们用Bhyrl零转移了我们学到的6D提取政策,以归功于我们的MM机器人Tiago ++。有关更多详细信息和代码发布,请参阅我们的项目网站:irosalab.com/rlmmbp
translated by 谷歌翻译
过去半年来,从控制和强化学习社区的真实机器人部署的安全学习方法的贡献数量急剧上升。本文提供了一种简洁的但整体审查,对利用机器学习实现的最新进展,以实现在不确定因素下的安全决策,重点是统一控制理论和加固学习研究中使用的语言和框架。我们的评论包括:基于学习的控制方法,通过学习不确定的动态,加强学习方法,鼓励安全或坚固性的加固学习方法,以及可以正式证明学习控制政策安全的方法。随着基于数据和学习的机器人控制方法继续获得牵引力,研究人员必须了解何时以及如何最好地利用它们在安全势在必行的现实情景中,例如在靠近人类的情况下操作时。我们突出了一些开放的挑战,即将在未来几年推动机器人学习领域,并强调需要逼真的物理基准的基准,以便于控制和加固学习方法之间的公平比较。
translated by 谷歌翻译
Learning a risk-aware policy is essential but rather challenging in unstructured robotic tasks. Safe reinforcement learning methods open up new possibilities to tackle this problem. However, the conservative policy updates make it intractable to achieve sufficient exploration and desirable performance in complex, sample-expensive environments. In this paper, we propose a dual-agent safe reinforcement learning strategy consisting of a baseline and a safe agent. Such a decoupled framework enables high flexibility, data efficiency and risk-awareness for RL-based control. Concretely, the baseline agent is responsible for maximizing rewards under standard RL settings. Thus, it is compatible with off-the-shelf training techniques of unconstrained optimization, exploration and exploitation. On the other hand, the safe agent mimics the baseline agent for policy improvement and learns to fulfill safety constraints via off-policy RL tuning. In contrast to training from scratch, safe policy correction requires significantly fewer interactions to obtain a near-optimal policy. The dual policies can be optimized synchronously via a shared replay buffer, or leveraging the pre-trained model or the non-learning-based controller as a fixed baseline agent. Experimental results show that our approach can learn feasible skills without prior knowledge as well as deriving risk-averse counterparts from pre-trained unsafe policies. The proposed method outperforms the state-of-the-art safe RL algorithms on difficult robot locomotion and manipulation tasks with respect to both safety constraint satisfaction and sample efficiency.
translated by 谷歌翻译
在强化学习(RL)的试验和错误机制中,我们期望学习安全的政策时出现臭名昭着的矛盾:如何学习没有足够数据和关于危险区域的先前模型的安全政策?现有方法主要使用危险行动的后期惩罚,这意味着代理人不会受到惩罚,直到体验危险。这一事实导致代理商也无法在收敛之后学习零违规政策。否则,它不会收到任何惩罚并失去有关危险的知识。在本文中,我们提出了安全设置的演员 - 评论家(SSAC)算法,它使用面向安全的能量函数或安全索引限制了策略更新。安全索引旨在迅速增加,以便潜在的危险行动,这使我们能够在动作空间上找到安全设置,或控制安全集。因此,我们可以在服用它们之前识别危险行为,并在收敛后进一步获得零限制违规政策。我们声称我们可以以类似于学习价值函数的无模型方式学习能量函数。通过使用作为约束目标的能量函数转变,我们制定了受约束的RL问题。我们证明我们基于拉格朗日的解决方案确保学习的政策将收敛到某些假设下的约束优化。在复杂的模拟环境和硬件循环(HIL)实验中评估了所提出的算法,具有来自自动车辆的真实控制器。实验结果表明,所有环境中的融合政策达到了零限制违规和基于模型的基线的相当性能。
translated by 谷歌翻译
从意外的外部扰动中恢复的能力是双模型运动的基本机动技能。有效的答复包括不仅可以恢复平衡并保持稳定性的能力,而且在平衡恢复物质不可行时,也可以保证安全的方式。对于与双式运动有关的机器人,例如人形机器人和辅助机器人设备,可帮助人类行走,设计能够提供这种稳定性和安全性的控制器可以防止机器人损坏或防止伤害相关的医疗费用。这是一个具有挑战性的任务,因为它涉及用触点产生高维,非线性和致动系统的高动态运动。尽管使用基于模型和优化方法的前进方面,但诸如广泛领域知识的要求,诸如较大的计算时间和有限的动态变化的鲁棒性仍然会使这个打开问题。在本文中,为了解决这些问题,我们开发基于学习的算法,能够为两种不同的机器人合成推送恢复控制政策:人形机器人和有助于双模型运动的辅助机器人设备。我们的工作可以分为两个密切相关的指示:1)学习人形机器人的安全下降和预防策略,2)使用机器人辅助装置学习人类的预防策略。为实现这一目标,我们介绍了一套深度加强学习(DRL)算法,以学习使用这些机器人时提高安全性的控制策略。
translated by 谷歌翻译
机器人将机器人的无缝集成到人类环境需要机器人来学习如何使用现有的人类工具。学习工具操纵技能的目前方法主要依赖于目标机器人环境中提供的专家演示,例如,通过手动引导机器人操纵器或通过远程操作。在这项工作中,我们介绍了一种自动化方法,取代了一个专家演示,用YouTube视频来学习工具操纵策略。主要贡献是双重的。首先,我们设计一个对齐过程,使模拟环境与视频中观察到的真实世界。这是作为优化问题,找到刀具轨迹的空间对齐,以最大化环境给出的稀疏目标奖励。其次,我们描述了一种专注于工具的轨迹而不是人类的运动的模仿学习方法。为此,我们将加强学习与优化过程相结合,以基于对准环境中的工具运动来找到控制策略和机器人的放置。我们展示了仿真中的铲子,镰刀和锤子工具的建议方法,并展示了训练有素的政策对真正的弗兰卡·埃米卡熊猫机器人示范的卫生政策的有效性。
translated by 谷歌翻译
在许多情况下,增强学习(RL)已被证明是有效的。但是,通常需要探索足够多的国家行动对,其中一些对不安全。因此,其应用于安全至关重要的系统仍然是一个挑战。解决安全性的越来越普遍的方法涉及将RL动作投射到安全的一组动作上的安全层。反过来,此类框架的困难是如何有效地将RL与安全层搭配以提高学习绩效。在本文中,我们将安全性作为基于型号的RL框架中的可区分强大控制式 - 助推器功能层。此外,我们还提出了一种模块化学习基本奖励驱动的任务的方法,独立于安全限制。我们证明,这种方法既可以确保安全性,又可以有效地指导一系列实验中的训练期间的探索,包括以模块化的方式学习奖励时,包括零拍传递。
translated by 谷歌翻译
值得信赖的强化学习算法应有能力解决挑战性的现实问题,包括{Robustly}处理不确定性,满足{安全}的限制以避免灾难性的失败,以及在部署过程中{prencepentiming}以避免灾难性的失败}。这项研究旨在概述这些可信赖的强化学习的主要观点,即考虑其在鲁棒性,安全性和概括性上的内在脆弱性。特别是,我们给出严格的表述,对相应的方法进行分类,并讨论每个观点的基准。此外,我们提供了一个前景部分,以刺激有希望的未来方向,并简要讨论考虑人类反馈的外部漏洞。我们希望这项调查可以在统一的框架中将单独的研究汇合在一起,并促进强化学习的可信度。
translated by 谷歌翻译
Safety comes first in many real-world applications involving autonomous agents. Despite a large number of reinforcement learning (RL) methods focusing on safety-critical tasks, there is still a lack of high-quality evaluation of those algorithms that adheres to safety constraints at each decision step under complex and unknown dynamics. In this paper, we revisit prior work in this scope from the perspective of state-wise safe RL and categorize them as projection-based, recovery-based, and optimization-based approaches, respectively. Furthermore, we propose Unrolling Safety Layer (USL), a joint method that combines safety optimization and safety projection. This novel technique explicitly enforces hard constraints via the deep unrolling architecture and enjoys structural advantages in navigating the trade-off between reward improvement and constraint satisfaction. To facilitate further research in this area, we reproduce related algorithms in a unified pipeline and incorporate them into SafeRL-Kit, a toolkit that provides off-the-shelf interfaces and evaluation utilities for safety-critical tasks. We then perform a comparative study of the involved algorithms on six benchmarks ranging from robotic control to autonomous driving. The empirical results provide an insight into their applicability and robustness in learning zero-cost-return policies without task-dependent handcrafting. The project page is available at https://sites.google.com/view/saferlkit.
translated by 谷歌翻译
安全是自主系统的关键组成部分,仍然是现实世界中要使用的基于学习的政策的挑战。特别是,由于不安全的行为,使用强化学习学习的政策通常无法推广到新的环境。在本文中,我们提出了SIM到LAB到实验室,以弥合现实差距,并提供概率保证的安全意见政策分配。为了提高安全性,我们采用双重政策设置,其中通过累积任务奖励对绩效政策进行培训,并通过根据汉密尔顿 - 雅各布(Hamilton-Jacobi)(HJ)达到可达性分析来培训备用(安全)政策。在SIM到LAB转移中,我们采用监督控制方案来掩盖探索过程中不安全的行动;在实验室到实验室的转移中,我们利用大约正确的(PAC) - 贝斯框架来提供有关在看不见环境中政策的预期性能和安全性的下限。此外,从HJ可达性分析继承,界限说明了每个环境中最坏情况安全性的期望。我们从经验上研究了两种类型的室内环境中的自我视频导航框架,具有不同程度的光真实性。我们还通过具有四足机器人的真实室内空间中的硬件实验来证明强大的概括性能。有关补充材料,请参见https://sites.google.com/princeton.edu/sim-to-lab-to-real。
translated by 谷歌翻译
Reinforcement learning holds the promise of enabling autonomous robots to learn large repertoires of behavioral skills with minimal human intervention. However, robotic applications of reinforcement learning often compromise the autonomy of the learning process in favor of achieving training times that are practical for real physical systems. This typically involves introducing hand-engineered policy representations and human-supplied demonstrations. Deep reinforcement learning alleviates this limitation by training general-purpose neural network policies, but applications of direct deep reinforcement learning algorithms have so far been restricted to simulated settings and relatively simple tasks, due to their apparent high sample complexity. In this paper, we demonstrate that a recent deep reinforcement learning algorithm based on offpolicy training of deep Q-functions can scale to complex 3D manipulation tasks and can learn deep neural network policies efficiently enough to train on real physical robots. We demonstrate that the training times can be further reduced by parallelizing the algorithm across multiple robots which pool their policy updates asynchronously. Our experimental evaluation shows that our method can learn a variety of 3D manipulation skills in simulation and a complex door opening skill on real robots without any prior demonstrations or manually designed representations.
translated by 谷歌翻译
Efficient use of the space in an elevator is very necessary for a service robot, due to the need for reducing the amount of time caused by waiting for the next elevator. To provide a solution for this, we propose a hybrid approach that combines reinforcement learning (RL) with voice interaction for robot navigation in the scene of entering the elevator. RL provides robots with a high exploration ability to find a new clear path to enter the elevator compared to traditional navigation methods such as Optimal Reciprocal Collision Avoidance (ORCA). The proposed method allows the robot to take an active clear path action towards the elevator whilst a crowd of people stands at the entrance of the elevator wherein there are still lots of space. This is done by embedding a clear path action (voice prompt) into the RL framework, and the proposed navigation policy helps the robot to finish tasks efficiently and safely. Our model approach provides a great improvement in the success rate and reward of entering the elevator compared to state-of-the-art navigation policies without active clear path operation.
translated by 谷歌翻译
强化学习(RL)是一种有希望的方法,对现实世界的应用程序取得有限,因为确保安全探索或促进充分利用是控制具有未知模型和测量不确定性的机器人系统的挑战。这种学习问题对于连续空间(状态空间和动作空间)的复杂任务变得更加棘手。在本文中,我们提出了一种由几个方面组成的基于学习的控制框架:(1)线性时间逻辑(LTL)被利用,以便于可以通过无限视野的复杂任务转换为新颖的自动化结构; (2)我们为RL-Agent提出了一种创新的奖励计划,正式保证,使全球最佳政策最大化满足LTL规范的概率; (3)基于奖励塑造技术,我们开发了利用自动机构结构的好处进行了模块化的政策梯度架构来分解整体任务,并促进学习控制器的性能; (4)通过纳入高斯过程(GPS)来估计不确定的动态系统,我们使用指数控制屏障功能(ECBF)综合基于模型的保障措施来解决高阶相对度的问题。此外,我们利用LTL自动化和ECBF的性质来构建引导过程,以进一步提高勘探效率。最后,我们通过多个机器人环境展示了框架的有效性。我们展示了这种基于ECBF的模块化深RL算法在训练期间实现了近乎完美的成功率和保护安全性,并且在训练期间具有很高的概率信心。
translated by 谷歌翻译
Safe Reinforcement Learning can be defined as the process of learning policies that maximize the expectation of the return in problems in which it is important to ensure reasonable system performance and/or respect safety constraints during the learning and/or deployment processes. We categorize and analyze two approaches of Safe Reinforcement Learning. The first is based on the modification of the optimality criterion, the classic discounted finite/infinite horizon, with a safety factor. The second is based on the modification of the exploration process through the incorporation of external knowledge or the guidance of a risk metric. We use the proposed classification to survey the existing literature, as well as suggesting future directions for Safe Reinforcement Learning.
translated by 谷歌翻译
Robot assistants are emerging as high-tech solutions to support people in everyday life. Following and assisting the user in the domestic environment requires flexible mobility to safely move in cluttered spaces. We introduce a new approach to person following for assistance and monitoring. Our methodology exploits an omnidirectional robotic platform to detach the computation of linear and angular velocities and navigate within the domestic environment without losing track of the assisted person. While linear velocities are managed by a conventional Dynamic Window Approach (DWA) local planner, we trained a Deep Reinforcement Learning (DRL) agent to predict optimized angular velocities commands and maintain the orientation of the robot towards the user. We evaluate our navigation system on a real omnidirectional platform in various indoor scenarios, demonstrating the competitive advantage of our solution compared to a standard differential steering following.
translated by 谷歌翻译
In contrast to the control-theoretic methods, the lack of stability guarantee remains a significant problem for model-free reinforcement learning (RL) methods. Jointly learning a policy and a Lyapunov function has recently become a promising approach to ensuring the whole system with a stability guarantee. However, the classical Lyapunov constraints researchers introduced cannot stabilize the system during the sampling-based optimization. Therefore, we propose the Adaptive Stability Certification (ASC), making the system reach sampling-based stability. Because the ASC condition can search for the optimal policy heuristically, we design the Adaptive Lyapunov-based Actor-Critic (ALAC) algorithm based on the ASC condition. Meanwhile, our algorithm avoids the optimization problem that a variety of constraints are coupled into the objective in current approaches. When evaluated on ten robotic tasks, our method achieves lower accumulated cost and fewer stability constraint violations than previous studies.
translated by 谷歌翻译