近年来,强化学习和基于学习的控制以及对他们的安全性的研究,这对于在现实世界机器人中的部署至关重要 - 都获得了重大的吸引力。但是,为了充分评估新结果的进度和适用性,我们需要工具来公平地比较控制和强化学习界提出的方法。在这里,我们提出了一个新的开源基准套件,称为“安全控制”套件,支持基于模型和基于数据的控制技术。我们为三个动态系统(Cart-Pole,1D和2D四极管)提供实现,以及两个控制任务 - 稳定和轨迹跟踪。我们建议扩展OpenAi的Gym API - 强化学习研究的事实上的标准 - (i)能够指定(和查询)符号动态和(ii)约束,以及(iii)(重复)(重复)在控制输入​​,状态测量和惯性特性。为了证明我们的建议并试图使研究社区更加紧密地结合在一起,我们展示了如何使用安全控制的gym定量比较传统控制领域的多种方法的控制绩效,数据效率和安全性控制和加强学习。
translated by 谷歌翻译
过去半年来,从控制和强化学习社区的真实机器人部署的安全学习方法的贡献数量急剧上升。本文提供了一种简洁的但整体审查,对利用机器学习实现的最新进展,以实现在不确定因素下的安全决策,重点是统一控制理论和加固学习研究中使用的语言和框架。我们的评论包括:基于学习的控制方法,通过学习不确定的动态,加强学习方法,鼓励安全或坚固性的加固学习方法,以及可以正式证明学习控制政策安全的方法。随着基于数据和学习的机器人控制方法继续获得牵引力,研究人员必须了解何时以及如何最好地利用它们在安全势在必行的现实情景中,例如在靠近人类的情况下操作时。我们突出了一些开放的挑战,即将在未来几年推动机器人学习领域,并强调需要逼真的物理基准的基准,以便于控制和加固学习方法之间的公平比较。
translated by 谷歌翻译
在这项工作中,我们考虑使用应用于四逆床控制的模型预测控制(MPC)导出和加入准确动态模型的问题。 MPC依赖于精确的动态模型来实现所需的闭环性能。然而,在复杂系统中存在不确定性以及他们在其运行的环境中的存在在获得对系统动态的充分准确表示方面构成挑战。在这项工作中,我们利用深度学习工具,基于知识的神经常规方程(KNODE),增强了从第一原理获得的模型。由此产生的混合模型包括来自模拟或现实世界实验数据的标称第一原理模型和神经网络。使用四轮压力机,我们将混合模型用于针对最先进的高斯过程(GP)模型,并表明混合模型提供了Quadrotor动态的更准确的预测,并且能够概括超出训练数据。为了提高闭环性能,混合模型集成到新的MPC框架中,称为KNODE-MPC。结果表明,就轨迹跟踪性能而言,综合框架在物理实验中达到了60.2%的仿真和21%以上。
translated by 谷歌翻译
Learning-enabled control systems have demonstrated impressive empirical performance on challenging control problems in robotics, but this performance comes at the cost of reduced transparency and lack of guarantees on the safety or stability of the learned controllers. In recent years, new techniques have emerged to provide these guarantees by learning certificates alongside control policies -- these certificates provide concise, data-driven proofs that guarantee the safety and stability of the learned control system. These methods not only allow the user to verify the safety of a learned controller but also provide supervision during training, allowing safety and stability requirements to influence the training process itself. In this paper, we provide a comprehensive survey of this rapidly developing field of certificate learning. We hope that this paper will serve as an accessible introduction to the theory and practice of certificate learning, both to those who wish to apply these tools to practical robotics problems and to those who wish to dive more deeply into the theory of learning for control.
translated by 谷歌翻译
从意外的外部扰动中恢复的能力是双模型运动的基本机动技能。有效的答复包括不仅可以恢复平衡并保持稳定性的能力,而且在平衡恢复物质不可行时,也可以保证安全的方式。对于与双式运动有关的机器人,例如人形机器人和辅助机器人设备,可帮助人类行走,设计能够提供这种稳定性和安全性的控制器可以防止机器人损坏或防止伤害相关的医疗费用。这是一个具有挑战性的任务,因为它涉及用触点产生高维,非线性和致动系统的高动态运动。尽管使用基于模型和优化方法的前进方面,但诸如广泛领域知识的要求,诸如较大的计算时间和有限的动态变化的鲁棒性仍然会使这个打开问题。在本文中,为了解决这些问题,我们开发基于学习的算法,能够为两种不同的机器人合成推送恢复控制政策:人形机器人和有助于双模型运动的辅助机器人设备。我们的工作可以分为两个密切相关的指示:1)学习人形机器人的安全下降和预防策略,2)使用机器人辅助装置学习人类的预防策略。为实现这一目标,我们介绍了一套深度加强学习(DRL)算法,以学习使用这些机器人时提高安全性的控制策略。
translated by 谷歌翻译
将无人机应用扩展到复杂任务的研究需要稳定的控制框架。最近,在许多研究中,对机器人控制以完成复杂的任务进行了深入的强化学习(RL)算法。不幸的是,由于难以解释博学的政策和缺乏稳定保证,尤其是对于诸如攀岩无人机之类的复杂任务,因此深入的RL算法可能不适合直接部署到现实世界的机器人平台中。本文提出了一种新型的混合体系结构,该结构通过使用无模型的Deep RL算法学习的强大策略来增强名义控制器。所提出的架构采用不确定性感受的控制搅拌机来保留名义控制器的保证稳定性,同时使用学习策略的扩展性能。该政策在模拟环境中进行了数千个域随机化的培训,以实现多样化的不确定性的稳健性能。通过现实世界实验验证了所提出的方法的性能,然后与传统的控制器和经过香草深RL算法训练的基于最新的学习控制器进行了比较。
translated by 谷歌翻译
在许多机器人和工业应用中,传统的线性控制策略已经广泛研究和使用,但它们不应响应系统的总动态,以避免对非线性控制等非线性控制方案的繁琐计算,加强学习的预测控制应用可以提供替代解决方案本文介绍了在移动自拍的深度确定性政策梯度和近端策略优化的情况下实现了RL控制的实现,在移动自拍伸直倒立摆片EWIP系统这样的RL模型使得找到满意控制方案的任务更容易,并在自我调整时有效地响应动态。在本文中提供更好控制的参数,两个RL基础控制器被针对MPC控制器捕获,以基于EWIP系统的状态变量进行评估,同时遵循特定的所需轨迹
translated by 谷歌翻译
事件触发的模型预测控制(EMPC)是一种流行的最佳控制方法,旨在减轻MPC的计算和/或通信负担。但是,通常需要先验了解闭环系统行为以及设计事件触发策略的通信特征。本文试图通过提出有效的EMPC框架来解决这一挑战,并在随后的自动驾驶汽车路径上成功实施了该框架。首先,使用无模型的加固学习(RL)代理用于学习最佳的事件触发策略,而无需在此框架中具有完整的动态系统和通信知识。此外,还采用了包括优先经验重播(PER)缓冲区和长期术语记忆(LSTM)的技术来促进探索和提高训练效率。在本文中,我们使用提出的三种深度RL算法的拟议框架,即双Q学习(DDQN),近端策略优化(PPO)和软参与者 - 批评(SAC),以解决此问题。实验结果表明,所有三个基于RL的EMPC(DEEP-RL-EMPC)都比在自动途径下的常规阈值和以前的基于线性Q的方法获得更好的评估性能。特别是,具有LSTM和DDQN-EMPC的PPO-EMPC具有PER和LSTM的PPO-EMPC在闭环控制性能和事件触发频率之间获得了较高的平衡。关联的代码是开源的,可在以下网址提供:https://github.com/dangfengying/rl基础基础 - event-triggered-mpc。
translated by 谷歌翻译
模型预测控制(MPC)是一种最先进的(SOTA)控制技术,需要迭代地解决硬约束优化问题。对于不确定的动态,基于分析模型的强大MPC施加了其他约束,从而增加了问题的硬度。当需要在较少的时间内需要更多计算时,问题会加剧性能至关重要的应用程序。过去已经提出了数据驱动的回归方法,例如神经网络,以近似系统动力学。但是,在没有符号分析先验的情况下,此类模型依赖于大量标记的数据。这会产生非平凡的培训间接开销。物理知识的神经网络(PINN)以合理的精度获得了近似的普通微分方程(ODE)的非线性系统的吸引力。在这项工作中,我们通过PINNS(RAMP-NET)提出了一个强大的自适应MPC框架,该框架使用了一种神经网络,部分从简单的ODE中训练,部分是由数据训练的。物理损失用于学习代表理想动态的简单odes。访问损失函数内部的分析功能是正常化的,为参数不确定性执行了可靠的行为。另一方面,定期数据丢失用于适应剩余的干扰(非参数不确定性),在数学建模过程中未被误解。实验是在模拟环境中进行的,以进行四轨的轨迹跟踪。与两种基于SOTA回归的MPC方法相比,我们报告了7.8%至43.2%和8.04%和8.04%至61.5%的跟踪误差的降低。
translated by 谷歌翻译
策略搜索和模型预测控制〜(MPC)是机器人控制的两个不同范式:策略搜索具有使用经验丰富的数据自动学习复杂策略的强度,而MPC可以使用模型和轨迹优化提供最佳控制性能。开放的研究问题是如何利用并结合两种方法的优势。在这项工作中,我们通过使用策略搜索自动选择MPC的高级决策变量提供答案,这导致了一种新的策略搜索 - 用于模型预测控制框架。具体地,我们将MPC作为参数化控制器配制,其中难以优化的决策变量表示为高级策略。这种制定允许以自我监督的方式优化政策。我们通过专注于敏捷无人机飞行中的具有挑战性的问题来验证这一框架:通过快速的盖茨飞行四轮车。实验表明,我们的控制器在模拟和现实世界中实现了鲁棒和实时的控制性能。拟议的框架提供了合并学习和控制的新视角。
translated by 谷歌翻译
许多机器人任务需要高维传感器,如相机和激光雷达,以导航复杂的环境,但是在这些传感器周围开发认可的安全反馈控制器仍然是一个具有挑战性的公开问题,特别是在涉及学习时的开放问题。以前的作品通过分离感知和控制子系统并对感知子系统的能力做出强烈的假设来证明了感知反馈控制器的安全性。在这项工作中,我们介绍了一种新的启用学习的感知反馈混合控制器,在那里我们使用控制屏障函数(CBF)和控制Lyapunov函数(CLF)来显示全堆叠感知反馈控制器的安全性和活力。我们使用神经网络直接在机器人的观察空间中学习全堆栈系统的CBF和CLF,而无需承担基于感知的状态估计器。我们的混合控制器称为基因座(使用切换启用了学习的观察反馈控制),可以安全地导航未知的环境,始终如一地达到其目标,并将安全性安全地概括为培训数据集之外的环境。我们在模拟和硬件中展示了实验中的轨迹,在那里它使用LIDAR传感器的反馈成功地导航变化环境。
translated by 谷歌翻译
机器人控制器的性能取决于其参数的选择,这需要仔细调整。在本文中,我们提出了DiFftune,这是一个新型,基于梯度的自动调整框架。我们的方法将动态系统和控制器作为计算图展开,并通过基于梯度的优化更新控制器参数。与常用的后传播方案不同,Difftune中的梯度是通过灵敏度传播获得的,这是一种与系统演化平行的前向模式自动分化技术。我们验证了杜宾汽车上提出的自动调节方法和在挑战性模拟环境中的四型旋转。仿真实验表明,该方法对于系统动力学和环境中的不确定性是可靠的,并且可以很好地推广到调整中看不见的轨迹。
translated by 谷歌翻译
在许多情况下,增强学习(RL)已被证明是有效的。但是,通常需要探索足够多的国家行动对,其中一些对不安全。因此,其应用于安全至关重要的系统仍然是一个挑战。解决安全性的越来越普遍的方法涉及将RL动作投射到安全的一组动作上的安全层。反过来,此类框架的困难是如何有效地将RL与安全层搭配以提高学习绩效。在本文中,我们将安全性作为基于型号的RL框架中的可区分强大控制式 - 助推器功能层。此外,我们还提出了一种模块化学习基本奖励驱动的任务的方法,独立于安全限制。我们证明,这种方法既可以确保安全性,又可以有效地指导一系列实验中的训练期间的探索,包括以模块化的方式学习奖励时,包括零拍传递。
translated by 谷歌翻译
机器人系统的控制设计很复杂,通常需要解决优化才能准确遵循轨迹。在线优化方法(例如模型预测性控制(MPC))已被证明可以实现出色的跟踪性能,但需要高计算能力。相反,基于学习的离线优化方法,例如加固学习(RL),可以在机器人上快速有效地执行,但几乎不匹配MPC在轨迹跟踪任务中的准确性。在具有有限计算的系统(例如航空车)中,必须在执行时间有效的精确控制器。我们提出了一种分析策略梯度(APG)方法来解决此问题。 APG通过在跟踪误差上以梯度下降的速度训练控制器来利用可区分的模拟器的可用性。我们解决了通过课程学习和实验经常在广泛使用的控制基准,Cartpole和两个常见的空中机器人,一个四极管和固定翼无人机上进行的训练不稳定性。在跟踪误差方面,我们提出的方法优于基于模型和无模型的RL方法。同时,它达到与MPC相似的性能,同时需要少于数量级的计算时间。我们的工作为APG作为机器人技术的有前途的控制方法提供了见解。为了促进对APG的探索,我们开放代码并在https://github.com/lis-epfl/apg_traightory_tracking上提供。
translated by 谷歌翻译
强化学习(RL)是一种有希望的方法,对现实世界的应用程序取得有限,因为确保安全探索或促进充分利用是控制具有未知模型和测量不确定性的机器人系统的挑战。这种学习问题对于连续空间(状态空间和动作空间)的复杂任务变得更加棘手。在本文中,我们提出了一种由几个方面组成的基于学习的控制框架:(1)线性时间逻辑(LTL)被利用,以便于可以通过无限视野的复杂任务转换为新颖的自动化结构; (2)我们为RL-Agent提出了一种创新的奖励计划,正式保证,使全球最佳政策最大化满足LTL规范的概率; (3)基于奖励塑造技术,我们开发了利用自动机构结构的好处进行了模块化的政策梯度架构来分解整体任务,并促进学习控制器的性能; (4)通过纳入高斯过程(GPS)来估计不确定的动态系统,我们使用指数控制屏障功能(ECBF)综合基于模型的保障措施来解决高阶相对度的问题。此外,我们利用LTL自动化和ECBF的性质来构建引导过程,以进一步提高勘探效率。最后,我们通过多个机器人环境展示了框架的有效性。我们展示了这种基于ECBF的模块化深RL算法在训练期间实现了近乎完美的成功率和保护安全性,并且在训练期间具有很高的概率信心。
translated by 谷歌翻译
随着机器学习算法和方法的成功,增强学习(RL)已成为越来越重要的研究领域。为了应对围绕RL训练时赋予RL代理的自由的安全问题,有关安全加固学习(SRL)的工作有所增加。但是,这些新的安全方法的审查少于其不安全的对应物。例如,安全方法之间的比较通常缺乏在相似的初始条件边界和超参数设置,使用较差的评估指标以及樱桃挑选最佳训练运行的情况下进行的公平评估,而不是在多个随机种子上平均。在这项工作中,我们使用评估最佳实践进行消融研究,以调查运行时间保证(RTA)的影响,该研究可以监视系统状态并干预以确保安全性,以确保安全性。通过研究在政策和非政策RL算法中的多种RTA方法,我们试图了解哪种RTA方法最有效,无论代理是否依赖RTA,以及奖励成型的重要性与RL代理培训中安全探索的重要性。我们的结论阐明了SRL的最有希望的方向,我们的评估方法为在未来的SRL工作中进行更好的比较奠定了基础。
translated by 谷歌翻译
移动机器人的成功操作要求它们迅速适应环境变化。为了为移动机器人开发自适应决策工具,我们提出了一种新颖的算法,该算法将元强化学习(META-RL)与模型预测控制(MPC)相结合。我们的方法采用额外的元元素算法作为基线,以使用MPC生成的过渡样本来训练策略,当机器人检测到某些事件可以通过MPC有效处理的某些事件,并明确使用机器人动力学。我们方法的关键思想是以随机和事件触发的方式在元学习策略和MPC控制器之间进行切换,以弥补由有限的预测范围引起的次优MPC动作。在元测试期间,将停用MPC模块,以显着减少运动控制中的计算时间。我们进一步提出了一种在线适应方案,该方案使机器人能够在单个轨迹中推断并适应新任务。通过使用(i)障碍物的合成运动和(ii)现实世界的行人运动数据,使用非线性汽车样的车辆模型来证明我们方法的性能。模拟结果表明,我们的方法在学习效率和导航质量方面优于其他算法。
translated by 谷歌翻译
Safe reinforcement learning (RL) with assured satisfaction of hard state constraints during training has recently received a lot of attention. Safety filters, e.g., based on control barrier functions (CBFs), provide a promising way for safe RL via modifying the unsafe actions of an RL agent on the fly. Existing safety filter-based approaches typically involve learning of uncertain dynamics and quantifying the learned model error, which leads to conservative filters before a large amount of data is collected to learn a good model, thereby preventing efficient exploration. This paper presents a method for safe and efficient model-free RL using disturbance observers (DOBs) and control barrier functions (CBFs). Unlike most existing safe RL methods that deal with hard state constraints, our method does not involve model learning, and leverages DOBs to accurately estimate the pointwise value of the uncertainty, which is then incorporated into a robust CBF condition to generate safe actions. The DOB-based CBF can be used as a safety filter with any model-free RL algorithms by minimally modifying the actions of an RL agent whenever necessary to ensure safety throughout the learning process. Simulation results on a unicycle and a 2D quadrotor demonstrate that the proposed method outperforms a state-of-the-art safe RL algorithm using CBFs and Gaussian processes-based model learning, in terms of safety violation rate, and sample and computational efficiency.
translated by 谷歌翻译
子格式微型航空车(MAV)中的准确而敏捷的轨迹跟踪是具有挑战性的,因为机器人的小规模会引起大型模型不确定性,要求强大的反馈控制器,而快速的动力学和计算约束则阻止了计算上昂贵的策略的部署。在这项工作中,我们提出了一种在MIT SoftFly(一个子)MAV(0.7克)上进行敏捷和计算有效轨迹跟踪的方法。我们的策略采用了级联的控制方案,在该方案中,自适应态度控制器与受过训练的神经网络政策相结合,以模仿轨迹跟踪可靠的管模型模型预测控制器(RTMPC)。神经网络政策是使用我们最近的工作获得的,这使该政策能够保留RTMPC的稳健性,但以其计算成本的一小部分。我们通过实验评估我们的方法,即使在更具挑战性的操作中,达到均方根误差也低于1.8 cm,与我们先前的工作相比,最大位置误差减少了60%,并证明了对大型外部干扰的稳健性
translated by 谷歌翻译
现代机器人系统具有卓越的移动性和机械技能,使其适合在现实世界场景中使用,其中需要与重物和精确的操纵能力进行互动。例如,具有高有效载荷容量的腿机器人可用于灾害场景,以清除危险物质或携带受伤的人。因此,可以开发能够使复杂机器人能够准确地执行运动和操作任务的规划算法。此外,需要在线适应机制,需要新的未知环境。在这项工作中,我们强加了模型预测控制(MPC)产生的最佳状态输入轨迹满足机器人系统自适应控制中的Lyapunov函数标准。因此,我们将控制Lyapunov函数(CLF)提供的稳定性保证以及MPC在统一的自适应框架中提供的最优性,在机器人与未知对象的交互过程中产生改进的性能。我们验证了携带未建模有效载荷和拉重盒子的四足机器人的仿真和硬件测试中提出的方法。
translated by 谷歌翻译