下一个最佳视图计算(NBV)是机器人技术中的长期问题,并包括确定下一个最有用的传感器位置,以有效,准确地重建3D对象或场景。像大多数当前方法一样,我们考虑了深度传感器的NBV预测。基于学习的方法依靠场景的体积表示适合路径规划,但与场景的大小相比,与使用基于表面的表示相比,相比,与场景的大小相比,准确性较低。但是,后者将相机限制为少量姿势。为了获得两种表示的优势,我们表明我们可以通过蒙特卡洛整合在体积表示上最大化表面指标。我们的方法会缩放到大型场景并处理自由相机运动:它需要输入一个任意的大点云,该点由LiDar Systems等深度传感器收集,以及相机姿势以预测NBV。我们在一个由大而复杂的3D场景制成的新型数据集上演示了我们的方法。
translated by 谷歌翻译
神经隐式表面已成为多视图3D重建的重要技术,但它们的准确性仍然有限。在本文中,我们认为这来自难以学习和呈现具有神经网络的高频纹理。因此,我们建议在不同视图中添加标准神经渲染优化直接照片一致性术语。直观地,我们优化隐式几何体,以便以一致的方式扭曲彼此的视图。我们证明,两个元素是这种方法成功的关键:(i)使用沿着每条光线的预测占用和3D点的预测占用和法线来翘曲整个补丁,并用稳健的结构相似度测量它们的相似性; (ii)以这种方式处理可见性和遮挡,使得不正确的扭曲不会给出太多的重要性,同时鼓励重建尽可能完整。我们评估了我们的方法,在标准的DTU和EPFL基准上被称为NeuralWarp,并表明它在两个数据集上以超过20%重建的艺术态度优于未经监督的隐式表面。
translated by 谷歌翻译
神经隐式功能最近显示了来自多个视图的表面重建的有希望的结果。但是,当重建无限或复杂的场景时,当前的方法仍然遭受过度复杂性和稳健性不佳。在本文中,我们介绍了RegSDF,这表明适当的点云监督和几何正规化足以产生高质量和健壮的重建结果。具体而言,RegSDF将额外的定向点云作为输入,并优化了可区分渲染框架内的签名距离字段和表面灯场。我们还介绍了这两个关键的正规化。第一个是在给定嘈杂和不完整输入的整个距离字段中平稳扩散签名距离值的Hessian正则化。第二个是最小的表面正则化,可紧凑并推断缺失的几何形状。大量实验是在DTU,BlendenDMV以及储罐和寺庙数据集上进行的。与最近的神经表面重建方法相比,RegSDF即使对于具有复杂拓扑和非结构化摄像头轨迹的开放场景,RegSDF也能够重建表面。
translated by 谷歌翻译
获取房间规模场景的高质量3D重建对于即将到来的AR或VR应用是至关重要的。这些范围从混合现实应用程序进行电话会议,虚拟测量,虚拟房间刨,到机器人应用。虽然使用神经辐射场(NERF)的基于卷的视图合成方法显示有希望再现对象或场景的外观,但它们不会重建实际表面。基于密度的表面的体积表示在使用行进立方体提取表面时导致伪影,因为在优化期间,密度沿着射线累积,并且不在单个样本点处于隔离点。我们建议使用隐式函数(截短的签名距离函数)来代表表面来代表表面。我们展示了如何在NERF框架中纳入此表示,并将其扩展为使用来自商品RGB-D传感器的深度测量,例如Kinect。此外,我们提出了一种姿势和相机细化技术,可提高整体重建质量。相反,与集成NERF的深度前瞻性的并发工作,其专注于新型视图合成,我们的方法能够重建高质量的韵律3D重建。
translated by 谷歌翻译
在视觉计算中,3D几何形状以许多不同的形式表示,包括网格,点云,体素电网,水平集和深度图像。每个表示都适用于不同的任务,从而使一个表示形式转换为另一个表示(前向地图)是一个重要且常见的问题。我们提出了全向距离字段(ODF),这是一种新的3D形状表示形式,该表示通过将深度从任何观看方向从任何3D位置存储到对象的表面来编码几何形状。由于射线是ODF的基本单元,因此可以轻松地从通用的3D表示和点云等常见的3D表示。与限制代表封闭表面的水平集方法不同,ODF是未签名的,因此可以对开放表面进行建模(例如服装)。我们证明,尽管在遮挡边界处存在固有的不连续性,但可以通过神经网络(Neururodf)有效地学习ODF。我们还引入了有效的前向映射算法,以转换odf to&从常见的3D表示。具体而言,我们引入了一种有效的跳跃立方体算法,用于从ODF生成网格。实验表明,神经模型可以通过过度拟合单个对象学会学会捕获高质量的形状,并学会概括对共同的形状类别。
translated by 谷歌翻译
综合照片 - 现实图像和视频是计算机图形的核心,并且是几十年的研究焦点。传统上,使用渲染算法(如光栅化或射线跟踪)生成场景的合成图像,其将几何形状和材料属性的表示为输入。统称,这些输入定义了实际场景和呈现的内容,并且被称为场景表示(其中场景由一个或多个对象组成)。示例场景表示是具有附带纹理的三角形网格(例如,由艺术家创建),点云(例如,来自深度传感器),体积网格(例如,来自CT扫描)或隐式曲面函数(例如,截短的符号距离)字段)。使用可分辨率渲染损耗的观察结果的这种场景表示的重建被称为逆图形或反向渲染。神经渲染密切相关,并将思想与经典计算机图形和机器学习中的思想相结合,以创建用于合成来自真实观察图像的图像的算法。神经渲染是朝向合成照片现实图像和视频内容的目标的跨越。近年来,我们通过数百个出版物显示了这一领域的巨大进展,这些出版物显示了将被动组件注入渲染管道的不同方式。这种最先进的神经渲染进步的报告侧重于将经典渲染原则与学习的3D场景表示结合的方法,通常现在被称为神经场景表示。这些方法的一个关键优势在于它们是通过设计的3D-一致,使诸如新颖的视点合成捕获场景的应用。除了处理静态场景的方法外,我们还涵盖了用于建模非刚性变形对象的神经场景表示...
translated by 谷歌翻译
In this work we address the challenging problem of multiview 3D surface reconstruction. We introduce a neural network architecture that simultaneously learns the unknown geometry, camera parameters, and a neural renderer that approximates the light reflected from the surface towards the camera. The geometry is represented as a zero level-set of a neural network, while the neural renderer, derived from the rendering equation, is capable of (implicitly) modeling a wide set of lighting conditions and materials. We trained our network on real world 2D images of objects with different material properties, lighting conditions, and noisy camera initializations from the DTU MVS dataset. We found our model to produce state of the art 3D surface reconstructions with high fidelity, resolution and detail.
translated by 谷歌翻译
最近对隐含形状表示的兴趣日益增长。与明确的陈述相反,他们没有解决局限性,他们很容易处理各种各样的表面拓扑。为了了解这些隐式表示,电流方法依赖于一定程度的形状监督(例如,内部/外部信息或距离形状知识),或者至少需要密集点云(以近似距离 - 到 - 到 - 形状)。相比之下,我们介绍{\方法},一种用于学习形状表示的自我监督方法,从可能极其稀疏的点云。就像在水牛的针问题一样,我们在点云上“掉落”(样本)针头,认为,静统计地靠近表面,针端点位于表面的相对侧。不需要形状知识,点云可以高稀疏,例如,作为车辆获取的Lidar点云。以前的自我监督形状表示方法未能在这种数据上产生良好的结果。我们获得定量结果与现有的形状重建数据集上现有的监督方法标准,并在Kitti等硬自动驾驶数据集中显示有前途的定性结果。
translated by 谷歌翻译
Implicit fields have been very effective to represent and learn 3D shapes accurately. Signed distance fields and occupancy fields are the preferred representations, both with well-studied properties, despite their restriction to closed surfaces. Several other variations and training principles have been proposed with the goal to represent all classes of shapes. In this paper, we develop a novel and yet fundamental representation by considering the unit vector field defined on 3D space: at each point in $\mathbb{R}^3$ the vector points to the closest point on the surface. We theoretically demonstrate that this vector field can be easily transformed to surface density by applying the vector field divergence. Unlike other standard representations, it directly encodes an important physical property of the surface, which is the surface normal. We further show the advantages of our vector field representation, specifically in learning general (open, closed, or multi-layered) surfaces as well as piecewise planar surfaces. We compare our method on several datasets including ShapeNet where the proposed new neural implicit field shows superior accuracy in representing any type of shape, outperforming other standard methods. The code will be released at https://github.com/edomel/ImplicitVF
translated by 谷歌翻译
最近的体积三维重建方法可以产生非常精确的结果,即使对于未观察的表面,也可以具有合理的几何形状。然而,当涉及多视图融合时,它们面临着不希望的权衡。它们可以通过全局平均来熔断所有可用视图信息,从而丢失精细的细节,或者他们可以启发式群集对本地融合的群集视图,从而限制他们共同考虑所有视图的能力。我们的关键洞察力是通过在摄像机姿势和图像内容上学习视图融合功能,可以在不限制视图多样性的情况下保留更详细的详细信息。我们建议使用变压器学习此多视图融合。为此,我们使用变压器介绍Vortx,一个端到端的体积3D重建网络,用于宽基线,多视图功能融合。我们的模型是遮挡感知的,利用变压器架构来预测初始投影场景几何估计。该估计用于避免将反射图像特征通过曲面到遮挡区域。我们在Scannet上培训我们的模型,并显示它比最先进的方法产生更好的重建。我们还展示了概括,没有任何微调,优于两个其他数据集,Tum-RGBD和ICL-Nuim的相同最先进的方法。
translated by 谷歌翻译
我们提出了一种准确的3D重建方法的方法。我们基于神经重建和渲染(例如神经辐射场(NERF))的最新进展的优势。这种方法的一个主要缺点是,它们未能重建对象的任何部分,这些部分在训练图像中不明确可见,这通常是野外图像和视频的情况。当缺乏证据时,可以使用诸如对称的结构先验来完成缺失的信息。但是,在神经渲染中利用此类先验是高度不平凡的:虽然几何和非反射材料可能是对称的,但环境场景的阴影和反射通常不是对称的。为了解决这个问题,我们将软对称性约束应用于3D几何和材料特性,并将外观纳入照明,反照率和反射率。我们在最近引入的CO3D数据集上评估了我们的方法,这是由于重建高度反射材料的挑战,重点是汽车类别。我们表明,它可以用高保真度重建未观察到的区域,并渲染高质量的新型视图图像。
translated by 谷歌翻译
机器学习的最近进步已经创造了利用一类基于坐标的神经网络来解决视觉计算问题的兴趣,该基于坐标的神经网络在空间和时间跨空间和时间的场景或对象的物理属性。我们称之为神经领域的这些方法已经看到在3D形状和图像的合成中成功应用,人体的动画,3D重建和姿势估计。然而,由于在短时间内的快速进展,许多论文存在,但尚未出现全面的审查和制定问题。在本报告中,我们通过提供上下文,数学接地和对神经领域的文学进行广泛综述来解决这一限制。本报告涉及两种维度的研究。在第一部分中,我们通过识别神经字段方法的公共组件,包括不同的表示,架构,前向映射和泛化方法来专注于神经字段的技术。在第二部分中,我们专注于神经领域的应用在视觉计算中的不同问题,超越(例如,机器人,音频)。我们的评论显示了历史上和当前化身的视觉计算中已覆盖的主题的广度,展示了神经字段方法所带来的提高的质量,灵活性和能力。最后,我们展示了一个伴随着贡献本综述的生活版本,可以由社区不断更新。
translated by 谷歌翻译
隐式神经网络已成功用于点云的表面重建。然而,它们中的许多人面临着可扩展性问题,因为它们将整个对象或场景的异构面功能编码为单个潜在载体。为了克服这种限制,一些方法在粗略普通的3D网格或3D补丁上推断潜伏向量,并将它们插入以应对占用查询。在这样做时,它们可以与对象表面上采样的输入点进行直接连接,并且它们在空间中均匀地附加信息,而不是其最重要的信息,即在表面附近。此外,依赖于固定的补丁大小可能需要离散化调整。要解决这些问题,我们建议使用点云卷积并计算每个输入点的潜伏向量。然后,我们使用推断的权重在最近的邻居上执行基于学习的插值。对象和场景数据集的实验表明,我们的方法在大多数古典指标上显着优于其他方法,产生更精细的细节和更好的重建更薄的卷。代码可在https://github.com/valeoai/poco获得。
translated by 谷歌翻译
从单视图重建3D形状是一个长期的研究问题。在本文中,我们展示了深度隐式地面网络,其可以通过预测底层符号距离场来从2D图像产生高质量的细节的3D网格。除了利用全局图像特征之外,禁止2D图像上的每个3D点的投影位置,并从图像特征映射中提取本地特征。结合全球和局部特征显着提高了符合距离场预测的准确性,特别是对于富含细节的区域。据我们所知,伪装是一种不断捕获从单视图图像中存在于3D形状中存在的孔和薄结构等细节的方法。 Disn在从合成和真实图像重建的各种形状类别上实现最先进的单视性重建性能。代码可在https://github.com/xharlie/disn提供补充可以在https://xharlie.github.io/images/neUrips_2019_Supp.pdf中找到补充
translated by 谷歌翻译
我们介绍了一种新的神经表面重建方法,称为Neus,用于重建具有高保真的对象和场景,从2D图像输入。现有的神经表面重建方法,例如DVR和IDR,需要前景掩模作为监控,容易被捕获在局部最小值中,因此与具有严重自动遮挡或薄结构的物体的重建斗争。同时,新型观测合成的最近神经方法,例如Nerf及其变体,使用体积渲染来产生具有优化的稳健性的神经场景表示,即使对于高度复杂的物体。然而,从该学习的内隐式表示提取高质量表面是困难的,因为表示表示没有足够的表面约束。在Neus中,我们建议将表面代表为符号距离功能(SDF)的零级集,并开发一种新的卷渲染方法来训练神经SDF表示。我们观察到传统的体积渲染方法导致表面重建的固有的几何误差(即偏置),因此提出了一种新的制剂,其在第一阶的第一阶偏差中没有偏置,因此即使没有掩码监督,也导致更准确的表面重建。 DTU数据集的实验和BlendedMVS数据集显示,Neus在高质量的表面重建中优于最先进的,特别是对于具有复杂结构和自动闭塞的物体和场景。
translated by 谷歌翻译
Physically based rendering of complex scenes can be prohibitively costly with a potentially unbounded and uneven distribution of complexity across the rendered image. The goal of an ideal level of detail (LoD) method is to make rendering costs independent of the 3D scene complexity, while preserving the appearance of the scene. However, current prefiltering LoD methods are limited in the appearances they can support due to their reliance of approximate models and other heuristics. We propose the first comprehensive multi-scale LoD framework for prefiltering 3D environments with complex geometry and materials (e.g., the Disney BRDF), while maintaining the appearance with respect to the ray-traced reference. Using a multi-scale hierarchy of the scene, we perform a data-driven prefiltering step to obtain an appearance phase function and directional coverage mask at each scale. At the heart of our approach is a novel neural representation that encodes this information into a compact latent form that is easy to decode inside a physically based renderer. Once a scene is baked out, our method requires no original geometry, materials, or textures at render time. We demonstrate that our approach compares favorably to state-of-the-art prefiltering methods and achieves considerable savings in memory for complex scenes.
translated by 谷歌翻译
由于其成功在从稀疏的输入图像集合中合成了场景的新颖视图,最近越来越受欢迎。到目前为止,通过通用密度函数建模了神经体积渲染技术的几何形状。此外,使用通向嘈杂的任意水平函数的任意水平集合来提取几何形状本身,通常是低保真重建。本文的目标是改善神经体积渲染中的几何形象和重建。我们通过将体积密度建模为几何形状来实现这一点。这与以前的工作与体积密度的函数建模几何。更详细地,我们将音量密度函数定义为Laplace的累积分发功能(CDF)应用于符号距离功能(SDF)表示。这种简单的密度表示有三个好处:(i)它为神经体积渲染过程中学到的几何形状提供了有用的电感偏差; (ii)它促进了缺陷近似误差的束缚,导致观看光线的准确采样。精确的采样对于提供几何和光线的精确耦合非常重要; (iii)允许高效无监督的脱位形状和外观在体积渲染中。将此新密度表示应用于具有挑战性的场景多视图数据集生产了高质量的几何重建,表现优于相关的基线。此外,由于两者的解剖学,场景之间的切换形状和外观是可能的。
translated by 谷歌翻译
With the advent of deep neural networks, learning-based approaches for 3D reconstruction have gained popularity. However, unlike for images, in 3D there is no canonical representation which is both computationally and memory efficient yet allows for representing high-resolution geometry of arbitrary topology. Many of the state-of-the-art learningbased 3D reconstruction approaches can hence only represent very coarse 3D geometry or are limited to a restricted domain. In this paper, we propose Occupancy Networks, a new representation for learning-based 3D reconstruction methods. Occupancy networks implicitly represent the 3D surface as the continuous decision boundary of a deep neural network classifier. In contrast to existing approaches, our representation encodes a description of the 3D output at infinite resolution without excessive memory footprint. We validate that our representation can efficiently encode 3D structure and can be inferred from various kinds of input. Our experiments demonstrate competitive results, both qualitatively and quantitatively, for the challenging tasks of 3D reconstruction from single images, noisy point clouds and coarse discrete voxel grids. We believe that occupancy networks will become a useful tool in a wide variety of learning-based 3D tasks.
translated by 谷歌翻译
深度生成模型的最新进展导致了3D形状合成的巨大进展。虽然现有模型能够合成表示为体素,点云或隐式功能的形状,但这些方法仅间接强制执行最终3D形状表面的合理性。在这里,我们提出了一种直接将对抗训练施加到物体表面的3D形状合成框架(Surfgen)。我们的方法使用可分解的球面投影层来捕获并表示隐式3D发生器的显式零IsoSurface作为在单元球上定义的功能。通过在对手设置中用球形CNN处理3D对象表面的球形表示,我们的发电机可以更好地学习自然形状表面的统计数据。我们在大规模形状数据集中评估我们的模型,并证明了端到端训练的模型能够产生具有不同拓扑的高保真3D形状。
translated by 谷歌翻译