香草无监督的域适应方法倾向于用固定的神经体系结构优化模型,在现实世界中,这不是很实际的,因为目标数据通常由不同的资源有限的设备处理。因此,促进各种设备的建筑适应非常必要。在本文中,我们引入了一个简单的框架,可靠的域名适应,以通过重量分担模型库来改善跨域的概括,从中可以采样不同能力的模型,以适应不同的准确性效率折衷。该框架中的主要挑战在于同时提高模型库中众多模型的适应性。为了解决这个问题,我们开发了一种随机的集合蒸馏方法,以完全利用模型库中的互补知识进行模型间相互作用。然而,考虑到模型间相互作用与模型适应之间的优化冲突,我们将现有的BI-CLAPERIFIER域混淆体系结构扩大到优化分离的三级分类器对应物中。优化模型库后,通过我们提出的无监督性能评估指标利用体系结构的适应。在各种资源限制下,我们的框架超过了其他竞争方法,在多个基准测试方面的利润很大。还值得强调的是,即使计算复杂性降低到$ 1/64 $,我们的框架也可以保护仅源模型的性能提高。代码将在https://github.com/hikvision-research/slimda上找到。
translated by 谷歌翻译
域适应(da)尝试将知识从标记的源域传输到从源的不同分发的未标记的目标域。为此,DA方法包括源分类目标,以提取源知识和域对齐目标以减少域移位,确保知识转移。通常,前DA方法采用一些重量的超参数来线性地结合培训目标来形成整体目标。然而,由于域移位,这些目标的梯度方向可能彼此冲突。在这种情况下,线性优化方案可能会降低整体目标值,以损坏其中一个培训目标,导致限制解决方案。在本文中,我们从基于梯度的角度来看了DA的优化方案。我们提出了帕累托域适应(Paretoda)方法来控制整体优化方向,旨在协同优化所有培训目标。具体地,为了达到目标域的理想解决方案,我们设计了模拟目标分类的替代损失。为了提高目标预测准确性以支持模拟,我们提出了一种目标预测精炼机制,其通过贝叶斯定理利用域标签。另一方面,由于对象的加权方案的先验知识通常无法指导优化来接近目标域上的最佳解决方案,因此我们提出了一种动态的偏好机制,以动态指导我们的合作优化通过替代损失的梯度保持未标记的目标数据集。关于图像分类和语义分割基准的广泛实验证明了Paretoda的有效性
translated by 谷歌翻译
批量归一化(BN)广泛用于现代神经网络,已被证明代表与域相关知识,因此对于跨域任务(如无监督域适应(UDA))无效。现有的BN变体方法在归一化模块中相同信道中的源和目标域知识。然而,跨域跨域的相应通道的特征之间的错位通常导致子最佳的可转换性。在本文中,我们利用跨域关系并提出了一种新颖的归一化方法,互惠归一化(RN)。具体地,RN首先呈现互易补偿(RC)模块,用于基于跨域频道明智的相关性在两个域中获取每个信道的补偿。然后,RN开发互易聚合(RA)模块,以便以其跨域补偿组件自适应地聚合特征。作为BN的替代方案,RN更适合于UDA问题并且可以容易地集成到流行的域适应方法中。实验表明,所提出的RN优于现有的正常化对应物,通过大幅度,并有助于最先进的适应方法实现更好的结果。源代码可在https://github.com/openning07/reciprocal-normalization-for-da上找到。
translated by 谷歌翻译
域适应(DA)旨在将知识从标签富裕但异构的域转移到标签恐慌域,这减轻了标签努力并吸引了相当大的关注。与以前的方法不同,重点是学习域中的特征表示,一些最近的方法存在通用半监督学习(SSL)技术,直接将它们应用于DA任务,甚至实现竞争性能。最受欢迎的SSL技术之一是伪标记,可通过标记数据训练的分类器为每个未标记数据分配伪标签。但是,它忽略了DA问题的分布偏移,并且不可避免地偏置为源数据。要解决此问题,我们提出了一个名为辅助目标域导向的分类器(ATDOC)的新伪标签框架。 ATDOC通过为目标数据引入辅助分类器来缓解分类器偏置,以提高伪标签的质量。具体地,我们使用内存机制并开发两种类型的非参数分类器,即最近的质心分类器和邻域聚合,而不引入任何其他网络参数。尽管在伪分类目标中具有简单性,但具有邻域聚集的ATDOC显着优于域对齐技术和现有的SSL技术,以及甚至瘢痕标记的SSL任务。
translated by 谷歌翻译
学习目标域中的未知样本(不存在于源类中)对于无监督域适应(UDA)相当重要。存在两个典型的UDA方案,即开放式和开放式集合,后者假定目标域中并非所有源类都显示在内。但是,大多数先前的方法都是为一个UDA场景而设计的,并且始终在其他UDA方案上表现差。此外,它们还需要在适应过程中标记的源数据,限制其在数据隐私敏感应用中的可用性。为了解决这些问题,本文提出了一种通用模型适应(UMAD)框架,其处理了UDA方案,而无需访问源数据,也不是关于域之间类别的类别的知识。具体而言,我们的目标是使用优雅设计的双头分类器来学习源模型,并将其提供给目标域。在适应期间,我们开发了一种信息丰富的一致性分数,以帮助区分从已知样品中的未知样本。为了在目标域中实现双边适应,我们进一步最大化了局部化的相互信息,以将已知的样本与源分类器对齐,并采用熵丢失,以便分别推动远离源分类边界的未知样本。开放式和开放式的UDA方案的实验表明,umad作为无需访问源数据的统一方法,展示与最先进的数据相关方法的可比性。
translated by 谷歌翻译
无监督域适应(UDA)旨在将知识从相关但不同的良好标记的源域转移到新的未标记的目标域。大多数现有的UDA方法需要访问源数据,因此当数据保密而不相配在隐私问题时,不适用。本文旨在仅使用培训的分类模型来解决现实设置,而不是访问源数据。为了有效地利用适应源模型,我们提出了一种新颖的方法,称为源假设转移(拍摄),其通过将目标数据特征拟合到冻结源分类模块(表示分类假设)来学习目标域的特征提取模块。具体而言,拍摄挖掘出于特征提取模块的信息最大化和自我监督学习,以确保目标特征通过同一假设与看不见的源数据的特征隐式对齐。此外,我们提出了一种新的标签转移策略,它基于预测的置信度(标签信息),然后采用半监督学习来将目标数据分成两个分裂,然后提高目标域中的较为自信预测的准确性。如果通过拍摄获得预测,我们表示标记转移为拍摄++。关于两位数分类和对象识别任务的广泛实验表明,拍摄和射击++实现了与最先进的结果超越或相当的结果,展示了我们对各种视域适应问题的方法的有效性。代码可用于\ url {https://github.com/tim-learn/shot-plus}。
translated by 谷歌翻译
通用域适应性(UNIDA)是一种一般无监督的域适应设置,它解决了自适应中的域和标签变化。它的主要挑战在于如何在未共享或未知类中识别目标样本。以前的方法通常努力描绘样本“置信度”以及拒绝未知数的阈值,并使跨域共享类的特征分布对齐。但是,仍然很难预先指定“信心”标准和阈值,这些标准和阈值适应各种实际任务,并且对未知数的错误预测进一步导致了共享类中特征的错误对准。在本文中,我们提出了一种新的UNIDA方法,该方法具有分类器悖论(UACP)的自适应未知身份验证,考虑到具有矛盾预测的样品可能是未知的,属于源类别。在UACP中,一个复合分类器与两种类型的预测变量共同设计。也就是说,多类(MC)预测器将样品分类为多个源类之一,而二进制单VS-ALL(OVA)预测器进一步验证了MC预测器的预测。验证失败或悖论的样品被鉴定为未知数。此外,在输出空间中进行了隐式域对齐,而不是共享类别的特征对齐,使跨域的样本共享相同的决策边界,尽管特征差异都具有相同的决策边界。经验结果验证了开放式UDA和通用UDA设置下的UACP。
translated by 谷歌翻译
Domain adaptation enables the learner to safely generalize into novel environments by mitigating domain shifts across distributions. Previous works may not effectively uncover the underlying reasons that would lead to the drastic model degradation on the target task. In this paper, we empirically reveal that the erratic discrimination of the target domain mainly stems from its much smaller feature norms with respect to that of the source domain. To this end, we propose a novel parameter-free Adaptive Feature Norm approach. We demonstrate that progressively adapting the feature norms of the two domains to a large range of values can result in significant transfer gains, implying that those task-specific features with larger norms are more transferable. Our method successfully unifies the computation of both standard and partial domain adaptation with more robustness against the negative transfer issue. Without bells and whistles but a few lines of code, our method substantially lifts the performance on the target task and exceeds state-of-the-arts by a large margin (11.5% on Office-Home [45] and 17.1% on VisDA2017 [31]). We hope our simple yet effective approach will shed some light on the future research of transfer learning. Code is available at https://github.com/jihanyang/AFN .
translated by 谷歌翻译
无监督的域适应性(DA)中的主要挑战是减轻源域和目标域之间的域移动。先前的DA工作表明,可以使用借口任务来通过学习域不变表示来减轻此域的转移。但是,实际上,我们发现大多数现有的借口任务对其他已建立的技术无效。因此,我们从理论上分析了如何以及何时可以利用子公司借口任务来协助给定DA问题的目标任务并制定客观的子公司任务适用性标准。基于此标准,我们设计了一个新颖的贴纸干预过程和铸造贴纸分类的过程,作为监督的子公司DA问题,该问题与目标任务无监督的DA同时发生。我们的方法不仅改善了目标任务适应性能,而且还促进了面向隐私的无源DA,即没有并发源目标访问。标准Office-31,Office-Home,Domainnet和Visda基准的实验证明了我们对单源和多源无源DA的优势。我们的方法还补充了现有的无源作品,从而实现了领先的绩效。
translated by 谷歌翻译
Active域适应(ADA)查询所选目标样本的标签,以帮助将模型从相关的源域调整为目标域。由于其有希望的表现,标签成本最少,因此最近引起了人们越来越多的关注。然而,现有的ADA方法尚未完全利用查询数据的局部环境,这对ADA很重要,尤其是当域间隙较大时。在本文中,我们提出了一个局部环境感知的活动域适应性(LADA)的新框架,该框架由两个关键模块组成。本地上下文感知的活动选择(LAS)模块选择其类概率预测与邻居不一致的目标样本。局部上下文感知模型适应(LMA)模块完善了具有查询样本及其扩展的邻居的模型,并由上下文保留损失正规化。广泛的实验表明,与现有的主动选择策略相比,LAS选择了更多的信息样本。此外,配备了LMA,整个LADA方法的表现优于各种基准测试的最先进的ADA解决方案。代码可在https://github.com/tsun/lada上找到。
translated by 谷歌翻译
无监督的域适应性(UDA)引起了相当大的关注,这将知识从富含标签的源域转移到相关但未标记的目标域。减少域间差异一直是提高UDA性能的关键因素,尤其是对于源域和目标域之间存在较大差距的任务。为此,我们提出了一种新颖的风格感知功能融合方法(SAFF),以弥合大域间隙和转移知识,同时减轻阶级歧视性信息的丧失。受到人类传递推理和学习能力的启发,研究了一种新颖的风格感知的自我互化领域(SSID),通过一系列中级辅助综合概念将两个看似无关的概念联系起来。具体而言,我们提出了一种新颖的SSID学习策略,该策略从源和目标域中选择样本作为锚点,然后随机融合这些锚的对象和样式特征,以生成具有标记和样式丰富的中级辅助功能以进行知识转移。此外,我们设计了一个外部存储库来存储和更新指定的标记功能,以获得稳定的类功能和班级样式功能。基于提议的内存库,内部和域间损耗功能旨在提高类识别能力和特征兼容性。同时,我们通过无限抽样模拟SSID的丰富潜在特征空间,并通过数学理论模拟损失函数的收敛性。最后,我们对常用的域自适应基准测试进行了全面的实验,以评估所提出的SAFF,并且实验结果表明,所提出的SAFF可以轻松地与不同的骨干网络结合在一起,并获得更好的性能作为插入插型模块。
translated by 谷歌翻译
无源域的适应(SFDA)旨在将预先培训的源模型调整到未标记的目标域而无需访问标记良好的源数据的情况下,由于数据隐私,安全性和传输问题,这是一个更实用的设置。为了弥补缺乏源数据,大多数现有方法引入了基于特征原型的伪标记策略,以实现自我训练模型的适应性。但是,特征原型是通过基于实例级预测的特征群集获得的,该特征群集是偏见的,并且倾向于导致嘈杂的标签,因为源和目标之间的视觉域间隙通常不同。此外,我们发现单中心特征原型可能无效地表示每个类别并引入负转移,尤其是对于这些硬转移数据。为了解决这些问题,我们为SFDA任务提供了一般类平衡的多中心动态原型(BMD)策略。具体而言,对于每个目标类别,我们首先引入全球类间平衡抽样策略,以汇总潜在的代表性目标样本。然后,我们设计了一类多中心聚类策略,以实现更健壮和代表性的原型生成。与在固定培训期更新伪标签的现有策略相反,我们进一步引入了动态伪标签策略,以在模型适应过程中结合网络更新信息。广泛的实验表明,所提出的模型不可替代的BMD策略显着改善了代表性的SFDA方法,以产生新的最新结果。该代码可在https://github.com/ispc-lab/bmd上找到。
translated by 谷歌翻译
域的适应性(DA)旨在将知识从标记的源域中学习的知识转移到未标记或标记较小但相关的目标域的知识。理想情况下,源和目标分布应彼此平等地对齐,以实现公正的知识转移。但是,由于源和目标域中注释数据的数量之间存在显着不平衡,通常只有目标分布与源域保持一致,从而使不必要的源特定知识适应目标域,即偏置域的适应性。为了解决此问题,在这项工作中,我们通过对基于对抗性的DA方法进行建模来对歧视器的不确定性进行建模,以优化无偏见转移。我们理论上分析了DA中提出的无偏可传递性学习方法的有效性。此外,为了减轻注释数据不平衡的影响,我们利用了目标域中未标记样品的伪标签选择的估计不确定性,这有助于实现更好的边际和条件分布在域之间的分布。对各种DA基准数据集的广泛实验结果表明,可以轻松地将所提出的方法纳入各种基于对抗性的DA方法中,从而实现最新的性能。
translated by 谷歌翻译
自我监督的学习(SSL)最近成为特征学习方法中的最爱。因此,它可以吸引域适应方法来考虑结合SSL。直觉是强制执行实例级别一致性,使得预测器在域中变得不变。但是,域适应制度中的大多数现有SSL方法通常被视为独立的辅助组件,使域自适应的签名无人看管。实际上,域间隙消失的最佳区域和SSL PERUSES的实例级别约束可能根本不一致。从这一点来看,我们向一个特定的范式的自我监督学习量身定制,用于域适应,即可转让的对比学习(TCL),这与SSL和所需的跨域转移性相一致地联系起来。我们发现对比学习本质上是一个合适的域适应候选者,因为它的实例不变性假设可以方便地促进由域适应任务青睐的跨域类级不变性。基于特定的记忆库结构和伪标签策略,TCL然后通过清洁和新的对比损失来惩罚源头和靶之间的跨域内域差异。免费午餐是由于纳入对比学习,TCL依赖于移动平均的关键编码器,自然地实现了用于目标数据的伪标签的暂停标签,这避免了无额外的成本。因此,TCL有效地减少了跨域间隙。通过对基准(Office-Home,Visda-2017,Diamet-Five,PACS和Domainnet)进行广泛的实验,用于单源和多源域适配任务,TCL已经证明了最先进的性能。
translated by 谷歌翻译
半监督域适应(SSDA)是一种具有挑战性的问题,需要克服1)以朝向域的较差的数据和2)分布换档的方法。不幸的是,由于培训数据偏差朝标标样本训练,域适应(DA)和半监督学习(SSL)方法的简单组合通常无法解决这两个目的。在本文中,我们介绍了一种自适应结构学习方法,以规范SSL和DA的合作。灵感来自多视图学习,我们建议的框架由共享特征编码器网络和两个分类器网络组成,用于涉及矛盾的目的。其中,其中一个分类器被应用于组目标特征以提高级别的密度,扩大了鲁棒代表学习的分类集群的间隙。同时,其他分类器作为符号器,试图散射源功能以增强决策边界的平滑度。目标聚类和源扩展的迭代使目标特征成为相应源点的扩张边界内的封闭良好。对于跨域特征对齐和部分标记的数据学习的联合地址,我们应用最大平均差异(MMD)距离最小化和自培训(ST)将矛盾结构投影成共享视图以进行可靠的最终决定。对标准SSDA基准的实验结果包括Domainnet和Office-Home,展示了我们对最先进的方法的方法的准确性和稳健性。
translated by 谷歌翻译
本文研究了一个新的,实用但具有挑战性的问题,称为类无监督的域名适应性(CI-UDA),其中标记的源域包含所有类别,但是未标记的目标域中的类别依次增加。由于两个困难,这个问题具有挑战性。首先,源和目标标签集在每个时间步骤都不一致,这使得很难进行准确的域对齐。其次,以前的目标类在当前步骤中不可用,从而忘记了先前的知识。为了解决这个问题,我们提出了一种新型的原型引导连续适应(PROCA)方法,由两种解决方案策略组成。 1)标签原型识别:我们通过检测具有目标样本的累积预测概率的共享类来识别目标标签原型。 2)基于原型的对齐和重播:基于确定的标签原型,我们对齐域并强制执行模型以保留先前的知识。有了这两种策略,ProCA能够有效地将源模型改编为类未标记的目标域。广泛的实验证明了Proca在解决CI-UDA方面的有效性和优势。源代码可从https://github.com/hongbin98/proca.git获得
translated by 谷歌翻译
在这项工作中,我们试图通过设计简单和紧凑的条件领域的逆势培训方法来解决无监督的域适应。我们首先重新审视简单的级联调节策略,其中特征与输出预测连接为鉴别器的输入。我们发现倾斜策略遭受了弱势调节力量。我们进一步证明扩大连接预测的规范可以有效地激励条件域对齐。因此,我们通过将输出预测标准化具有相同的特征的输出预测来改善连接调节,并且派生方法作为归一化输出调节器〜(名词)。然而,对域对齐的原始输出预测的调理,名词遭受目标域的不准确预测。为此,我们建议将原型空间中的跨域特征对齐方式而不是输出空间。将新的原型基于原型的调节与名词相结合,我们将增强方法作为基于原型的归一化输出调节器〜(代词)。对象识别和语义分割的实验表明,名词可以有效地对准域跨域的多模态结构,甚至优于最先进的域侵犯训练方法。与基于原型的调节一起,代词进一步提高了UDA的多个对象识别基准上的名词的适应性能。
translated by 谷歌翻译
无监督的域适应(UDA)旨在将知识从标记的源域传输到未标记的目标域。大多数现有的UDA方法通过学习域 - 不变的表示和在两个域中共享一个分类器来实现知识传输。但是,忽略与任务相关的域特定信息,并强制统一的分类器以适合两个域将限制每个域中的特征表达性。在本文中,通过观察到具有可比参数的变压器架构可以产生比CNN对应的更可转换的表示,我们提出了一个双赢的变压器框架(WINTR),它分别探讨了每个域的特定于域的知识,而同时交互式跨域知识。具体而言,我们使用变压器中的两个单独的分类令牌学习两个不同的映射,以及每个特定于域的分类器的设计。跨域知识通过源引导标签改进和与源或目标的单侧特征对齐传输,这保持了特定于域的信息的完整性。三个基准数据集的广泛实验表明,我们的方法优于最先进的UDA方法,验证利用域特定和不变性的有效性
translated by 谷歌翻译
无源的无监督域适应性(SFUDA)旨在使用未标记的目标数据和训练有素的源域模型来学习目标域模型。大多数先前的SFUDA都致力于根据源知识推断目标数据的语义。在不衡量源知识的可传递性的情况下,这些方法不足以利用源知识,并且无法识别推断的目标语义的可靠性。但是,现有的可传递性测量需要源数据或目标标签,而SFUDA中是不可行的。为此,首先,我们提出了一种新颖的不确定性诱导的可传递性表示(UTR),该表示在没有源数据和目标标签的情况下,它利用不确定性作为工具来分析源编码的通道可传递性。域级UTR揭开了编码器通道向目标域的可传输程度,实例级别的UTR表征了推断的目标语义的可靠性。其次,基于UTR,我们为SFUDA提出了一个新颖的校准自适应框架(CAF),包括i)源知识校准模块,该模块指导目标模型学习可转移的源知识并丢弃不可转移的源知识,并且II)校准不可靠语义的目标语义校准模块。在校准的源知识和目标语义的帮助下,该模型可以安全地适应目标领域。我们使用实验结果验证了方法的有效性,并证明所提出的方法在三个SFUDA基准上实现了最先进的性能。代码可在https://github.com/spiresearch/utr上找到。
translated by 谷歌翻译
最近,无监督的域适应是一种有效的范例,用于概括深度神经网络到新的目标域。但是,仍有巨大的潜力才能达到完全监督的性能。在本文中,我们提出了一种新颖的主动学习策略,以帮助目标域中的知识转移,有效域适应。我们从观察开始,即当训练(源)和测试(目标)数据来自不同的分布时,基于能量的模型表现出自由能量偏差。灵感来自这种固有的机制,我们经验揭示了一种简单而有效的能源 - 基于能量的采样策略揭示了比需要特定架构或距离计算的现有方法的最有价值的目标样本。我们的算法,基于能量的活动域适应(EADA),查询逻辑数据组,它将域特征和实例不确定性结合到每个选择回合中。同时,通过通过正则化术语对准源域周围的目标数据紧凑的自由能,可以隐含地减少域间隙。通过广泛的实验,我们表明EADA在众所周知的具有挑战性的基准上超越了最先进的方法,具有实质性的改进,使其成为开放世界中的一个有用的选择。代码可在https://github.com/bit-da/eada获得。
translated by 谷歌翻译