最近,“ SP”(随机Polyak步长)方法已成为一种竞争自适应方法,用于设置SGD的步骤尺寸。SP可以解释为专门针对插值模型的方法,因为它求解了插值方程。SP通过使用模型的局部线性化来求解这些方程。我们进一步迈出一步,并开发一种解决模型局部二阶近似的插值方程的方法。我们最终的方法SP2使用Hessian-Vector产品来加快SP的收敛性。此外,在二阶方法中,SP2的设计绝不依赖于正定的Hessian矩阵或目标函数的凸度。我们显示SP2在矩阵完成,非凸测试问题和逻辑回归方面非常有竞争力。我们还提供了关于Quadratics总和的融合理论。
translated by 谷歌翻译
我们提供了新的基于梯度的方法,以便有效解决广泛的病态化优化问题。我们考虑最小化函数$ f:\ mathbb {r} ^ d \ lightarrow \ mathbb {r} $的问题,它是隐含的可分解的,作为$ m $未知的非交互方式的总和,强烈的凸起功能并提供方法这解决了这个问题,这些问题是缩放(最快的对数因子)作为组件的条件数量的平方根的乘积。这种复杂性绑定(我们证明几乎是最佳的)可以几乎指出的是加速梯度方法的几乎是指数的,这将作为$ F $的条件数量的平方根。此外,我们提供了求解该多尺度优化问题的随机异标变体的有效方法。而不是学习$ F $的分解(这将是过度昂贵的),而是我们的方法应用一个清洁递归“大步小步”交错标准方法。由此产生的算法使用$ \ tilde {\ mathcal {o}}(d m)$空间,在数字上稳定,并打开门以更细粒度的了解凸优化超出条件号的复杂性。
translated by 谷歌翻译
在本文中,我们研究并证明了拟牛顿算法的Broyden阶级的非渐近超线性收敛速率,包括Davidon - Fletcher - Powell(DFP)方法和泡沫 - 弗莱彻 - 夏诺(BFGS)方法。这些准牛顿方法的渐近超线性收敛率在文献中已经广泛研究,但它们明确的有限时间局部会聚率未得到充分调查。在本文中,我们为Broyden Quasi-Newton算法提供了有限时间(非渐近的)收敛分析,在目标函数强烈凸起的假设下,其梯度是Lipschitz连续的,并且其Hessian在最佳解决方案中连续连续。我们表明,在最佳解决方案的本地附近,DFP和BFGS生成的迭代以$(1 / k)^ {k / 2} $的超连线率收敛到最佳解决方案,其中$ k $是迭代次数。我们还证明了类似的本地超连线收敛结果,因为目标函数是自我协调的情况。几个数据集的数值实验证实了我们显式的收敛速度界限。我们的理论保证是第一个为准牛顿方法提供非渐近超线性收敛速率的效果之一。
translated by 谷歌翻译
近期在应用于培训深度神经网络和数据分析中的其他优化问题中的非凸优化的优化算法的兴趣增加,我们概述了最近对非凸优化优化算法的全球性能保证的理论结果。我们从古典参数开始,显示一般非凸面问题无法在合理的时间内有效地解决。然后,我们提供了一个问题列表,可以通过利用问题的结构来有效地找到全球最小化器,因为可能的问题。处理非凸性的另一种方法是放宽目标,从找到全局最小,以找到静止点或局部最小值。对于该设置,我们首先为确定性一阶方法的收敛速率提出了已知结果,然后是最佳随机和随机梯度方案的一般理论分析,以及随机第一阶方法的概述。之后,我们讨论了非常一般的非凸面问题,例如最小化$ \ alpha $ -weakly-are-convex功能和满足Polyak-lojasiewicz条件的功能,这仍然允许获得一阶的理论融合保证方法。然后,我们考虑更高阶和零序/衍生物的方法及其收敛速率,以获得非凸优化问题。
translated by 谷歌翻译
We consider minimizing a smooth and strongly convex objective function using a stochastic Newton method. At each iteration, the algorithm is given an oracle access to a stochastic estimate of the Hessian matrix. The oracle model includes popular algorithms such as Subsampled Newton and Newton Sketch. Despite using second-order information, these existing methods do not exhibit superlinear convergence, unless the stochastic noise is gradually reduced to zero during the iteration, which would lead to a computational blow-up in the per-iteration cost. We propose to address this limitation with Hessian averaging: instead of using the most recent Hessian estimate, our algorithm maintains an average of all the past estimates. This reduces the stochastic noise while avoiding the computational blow-up. We show that this scheme exhibits local $Q$-superlinear convergence with a non-asymptotic rate of $(\Upsilon\sqrt{\log (t)/t}\,)^{t}$, where $\Upsilon$ is proportional to the level of stochastic noise in the Hessian oracle. A potential drawback of this (uniform averaging) approach is that the averaged estimates contain Hessian information from the global phase of the method, i.e., before the iterates converge to a local neighborhood. This leads to a distortion that may substantially delay the superlinear convergence until long after the local neighborhood is reached. To address this drawback, we study a number of weighted averaging schemes that assign larger weights to recent Hessians, so that the superlinear convergence arises sooner, albeit with a slightly slower rate. Remarkably, we show that there exists a universal weighted averaging scheme that transitions to local convergence at an optimal stage, and still exhibits a superlinear convergence rate nearly (up to a logarithmic factor) matching that of uniform Hessian averaging.
translated by 谷歌翻译
对于光滑的强凸目标,梯度下降的经典理论可确保相对于梯度评估的数量的线性收敛。一个类似的非球形理论是具有挑战性的:即使目标在每一次迭代的目标流畅时,相应的本地模型也是不稳定的,传统的补救措施需要不可预测的许多切割平面。我们提出了对局部优化的梯度下降迭代的多点概括。虽然设计了一般目标,但我们受到“最大平滑”模型的动机,可在最佳状态下捕获子样本维度。当目标本身自象最大的情况时,我们证明了线性融合,并且实验表明了更普遍的现象。
translated by 谷歌翻译
We introduce SketchySGD, a stochastic quasi-Newton method that uses sketching to approximate the curvature of the loss function. Quasi-Newton methods are among the most effective algorithms in traditional optimization, where they converge much faster than first-order methods such as SGD. However, for contemporary deep learning, quasi-Newton methods are considered inferior to first-order methods like SGD and Adam owing to higher per-iteration complexity and fragility due to inexact gradients. SketchySGD circumvents these issues by a novel combination of subsampling, randomized low-rank approximation, and dynamic regularization. In the convex case, we show SketchySGD with a fixed stepsize converges to a small ball around the optimum at a faster rate than SGD for ill-conditioned problems. In the non-convex case, SketchySGD converges linearly under two additional assumptions, interpolation and the Polyak-Lojaciewicz condition, the latter of which holds with high probability for wide neural networks. Numerical experiments on image and tabular data demonstrate the improved reliability and speed of SketchySGD for deep learning, compared to standard optimizers such as SGD and Adam and existing quasi-Newton methods.
translated by 谷歌翻译
在本文中,我们提出了SC-REG(自助正规化)来学习过共同的前馈神经网络来学习\ EMPH {牛顿递减}框架的二阶信息进行凸起问题。我们提出了具有自助正规化(得分-GGN)算法的广义高斯 - 牛顿,其每次接收到新输入批处理时都会更新网络参数。所提出的算法利用Hessian矩阵中的二阶信息的结构,从而减少训练计算开销。虽然我们的目前的分析仅考虑凸面的情况,但数值实验表明了我们在凸和非凸面设置下的方法和快速收敛的效率,这对基线一阶方法和准牛顿方法进行了比较。
translated by 谷歌翻译
我们开发了两种基本的随机素描技术。惩罚草图(PS)和增强拉格朗日草图(ALS),用于解决一致的线性系统。提出的PS和ALS技术通过引入拉格朗日罚款草图扩展并推广了草图和项目方法的范围。在此过程中,我们将SP方法恢复为特殊情况,并开发出新的随机迭代方法的家庭。通过在拟议的PS方法中改变草图参数,我们恢复了新颖的随机方法,例如牛顿下降,惩罚性kaczmarz,罚款随机下降,惩罚坐标下降,惩罚性高斯追捕和惩罚块Kaczmarz。此外,提出的ALS方法合成了多种新的随机方法,例如增强的牛顿血统,增强的kaczmarz,增强随机下降,增强的坐标下降,增强的高斯匹配以及增强的kaczmarz kaczmarz成为一个框架。此外,我们表明,开发的PS和ALS框架可用于将原始线性系统重新制定为等效的随机优化问题,即惩罚随机重新印度重新制定和增强随机重新印度。我们证明了PS和ALS方法的全局收敛速率以及子线性$ \ Mathcal {O}(\ frac {1} {k} {k})$ ration $ rate cesaro迭代率的$速率。所提出的收敛结果适用于广泛的随机矩阵分布家族,这提供了微调适合特定应用方法的随机性的机会。最后,我们执行的计算实验证明了与现有SP方法相比,我们方法的效率。
translated by 谷歌翻译
我们研究无限制的黎曼优化的免投影方法。特别是,我们提出了黎曼弗兰克 - 沃尔夫(RFW)方法。我们将RFW的非渐近收敛率分析为最佳(高音)凸起问题,以及非凸起目标的临界点。我们还提出了一种实用的设置,其中RFW可以获得线性收敛速度。作为一个具体的例子,我们将RFW专用于正定矩阵的歧管,并将其应用于两个任务:(i)计算矩阵几何平均值(riemannian质心); (ii)计算Bures-Wasserstein重心。这两个任务都涉及大量凸间间隔约束,为此,我们表明RFW要求的Riemannian“线性”Oracle承认了闭合形式的解决方案;该结果可能是独立的兴趣。我们进一步专门从事RFW到特殊正交组,并表明这里也可以以封闭形式解决riemannian“线性”甲骨文。在这里,我们描述了数据矩阵同步的应用程序(促使问题)。我们补充了我们的理论结果,并对RFW对最先进的riemananian优化方法进行了实证比较,并观察到RFW竞争性地对计算黎曼心质的任务进行竞争性。
translated by 谷歌翻译
This paper shows that a perturbed form of gradient descent converges to a second-order stationary point in a number iterations which depends only poly-logarithmically on dimension (i.e., it is almost "dimension-free"). The convergence rate of this procedure matches the wellknown convergence rate of gradient descent to first-order stationary points, up to log factors. When all saddle points are non-degenerate, all second-order stationary points are local minima, and our result thus shows that perturbed gradient descent can escape saddle points almost for free.Our results can be directly applied to many machine learning applications, including deep learning. As a particular concrete example of such an application, we show that our results can be used directly to establish sharp global convergence rates for matrix factorization. Our results rely on a novel characterization of the geometry around saddle points, which may be of independent interest to the non-convex optimization community.
translated by 谷歌翻译
广义自我符合是许多重要学习问题的目标功能中存在的关键属性。我们建立了一个简单的Frank-Wolfe变体的收敛速率,该变体使用开环步数策略$ \ gamma_t = 2/(t+2)$,获得了$ \ Mathcal {o}(1/t)$收敛率对于这类功能,就原始差距和弗兰克 - 沃尔夫差距而言,$ t $是迭代计数。这避免了使用二阶信息或估计以前工作的局部平滑度参数的需求。我们还显示了各种常见病例的收敛速率的提高,例如,当所考虑的可行区域均匀地凸或多面体时。
translated by 谷歌翻译
我们调查随机镜面下降(SMD)的趋同相对光滑和平滑凸优化。在相对平滑的凸优化中,我们为SMD提供了新的收敛保证,并持续步骤。对于平滑的凸优化,我们提出了一种新的自适应步骤方案 - 镜子随机Polyak Spectize(MSP)。值得注意的是,我们的收敛导致两个设置都不会使有界渐变假设或有界方差假设,并且我们向邻域显示在插值下消失的邻居的融合。MSP概括了最近提出的随机Polyak Spectize(SPS)(Loizou等,2021)以镜子血液镜子,并且在继承镜子血清的好处的同时,现代机器学习应用仍然是实用和高效的。我们将我们的结果与各种监督的学习任务和SMD的不同实例相结合,展示了MSP的有效性。
translated by 谷歌翻译
诸如压缩感测,图像恢复,矩阵/张恢复和非负矩阵分子等信号处理和机器学习中的许多近期问题可以作为约束优化。预计的梯度下降是一种解决如此约束优化问题的简单且有效的方法。本地收敛分析将我们对解决方案附近的渐近行为的理解,与全球收敛分析相比,收敛率的较小界限提供了较小的界限。然而,本地保证通常出现在机器学习和信号处理的特定问题领域。此稿件在约束最小二乘范围内,对投影梯度下降的局部收敛性分析提供了统一的框架。该建议的分析提供了枢转局部收敛性的见解,例如线性收敛的条件,收敛区域,精确的渐近收敛速率,以及达到一定程度的准确度所需的迭代次数的界限。为了证明所提出的方法的适用性,我们介绍了PGD的收敛分析的配方,并通过在四个基本问题上的配方的开始延迟应用来证明它,即线性约束最小二乘,稀疏恢复,最小二乘法使用单位规范约束和矩阵完成。
translated by 谷歌翻译
在本文中,我们考虑了第一和二阶技术来解决机器学习中产生的连续优化问题。在一阶案例中,我们提出了一种从确定性或半确定性到随机二次正则化方法的转换框架。我们利用随机优化的两相性质提出了一种具有自适应采样和自适应步长的新型一阶算法。在二阶案例中,我们提出了一种新型随机阻尼L-BFGS方法,该方法可以在深度学习的高度非凸起背景下提高先前的算法。这两种算法都在众所周知的深度学习数据集上进行评估并表现出有希望的性能。
translated by 谷歌翻译
最近对基于置换的SGD的接地结果进行了证实了广泛观察到的现象:随机排列提供更快的收敛性,而不是更换采样。但是,是随机的最佳状态吗?我们表明这一点在很大程度上取决于我们正在优化的功能,并且最佳和随机排放之间的收敛差距可能因指数而异。我们首先表明,对于具有光滑的第二衍生物的1维强凸功能,与随机相比,存在令人指导的收敛性的排列。但是,对于一般强凸的功能,随机排列是最佳的。最后,我们表明,对于二次,强凸的功能,与随机相比,存在易于构建的置换,从而导致加速会聚。我们的研究结果表明,最佳排列的一般收敛性表征不能捕获各个函数类的细微差别,并且可能错误地表明一个人不能比随机更好。
translated by 谷歌翻译
我们应用随机顺序二次编程(STOSQP)算法来求解受约束的非线性优化问题,在该问题是随机的,并且约束是确定性的。我们研究了一个完全随机的设置,其中每次迭代中只有一个样本可用于估计物镜的梯度和黑森州。我们允许stosqp选择一个随机架子$ \ bar {\ alpha} _t $适应性,使得$ \ beta_t \ leq \ leq \ bar {\ alpha} _t \ leq \ leq \ beta_t+beta_t+\ chi_t+\ chi_t $,wither = o(\ beta_t)$是预定的确定性序列。我们还允许STOSQP通过随机迭代求解器(例如,使用草图和项目方法)求解牛顿系统。而且我们不需要不精确的牛顿方向的近似误差即可消失。对于这个一般的STOSQP框架,我们建立了其最后一次迭代的渐近收敛速率,最差的案例迭代复杂性是副产品。我们执行统计推断。特别是,有了适当的衰减$ \ beta_t,\ chi_t $,我们表明:(i)STOSQP方案最多可以采用$ o(1/\ epsilon^4)$ iterations $ iterations $ iTerations以实现$ \ epsilon $ -Stationarity; (ii)几乎毫无疑问,$ \ |(x_t -x^\ star,\ lambda_t- \ lambda^\ star)\ | | = o(\ sqrt {\ beta_t \ log(1/\ beta_t)})+o(\ chi_t/\ beta_t)$,其中$(x_t,\ lambda_t)$是primal-dimal-dimal-dialal-dialal-dialal-dual stosqp itselmate; (iii)序列$ 1/\ sqrt {\ beta_t} \ cdot(x_t -x^\ star,\ lambda_t- \ lambda_t- \ lambda^\ star)$收敛到平均零高斯分布,具有非琐事的共价矩阵。此外,我们建立了$(x_t,\ lambda_t)$的Berry-Esseen,以定量地测量其分布功能的收敛性。我们还为协方差矩阵提供了实用的估计器,可以使用iTerates $ \ {(x_t,\ lambda_t)\} _ t $构建$(x^\ star,\ lambda^\ star)$的置信区间(x^\ star,\ lambda^\ star)$。我们的定理使用最可爱的测试集中的非线性问题验证。
translated by 谷歌翻译
我们考虑使用梯度下降来最大程度地减少$ f(x)= \ phi(xx^{t})$在$ n \ times r $因件矩阵$ x $上,其中$ \ phi是一种基础平稳凸成本函数定义了$ n \ times n $矩阵。虽然只能在合理的时间内发现只有二阶固定点$ x $,但如果$ x $的排名不足,则其排名不足证明其是全球最佳的。这种认证全球最优性的方式必然需要当前迭代$ x $的搜索等级$ r $,以相对于级别$ r^{\ star} $过度参数化。不幸的是,过度参数显着减慢了梯度下降的收敛性,从$ r = r = r = r^{\ star} $的线性速率到$ r> r> r> r> r^{\ star} $,即使$ \ phi $是$ \ phi $强烈凸。在本文中,我们提出了一项廉价的预处理,该预处理恢复了过度参数化的情况下梯度下降回到线性的收敛速率,同时也使在全局最小化器$ x^{\ star} $中可能不良条件变得不可知。
translated by 谷歌翻译
我们研究了估计多元高斯分布中的精度矩阵的问题,其中所有部分相关性都是非负面的,也称为多变量完全阳性的顺序阳性($ \ mathrm {mtp} _2 $)。近年来,这种模型得到了重大关注,主要是由于有趣的性质,例如,无论底层尺寸如何,最大似然估计值都存在于两个观察。我们将此问题作为加权$ \ ell_1 $ -norm正常化高斯的最大似然估计下$ \ mathrm {mtp} _2 $约束。在此方向上,我们提出了一种新颖的预计牛顿样算法,该算法包含精心设计的近似牛顿方向,这导致我们具有与一阶方法相同的计算和内存成本的算法。我们证明提出的预计牛顿样算法会聚到问题的最小值。从理论和实验中,我们进一步展示了我们使用加权$ \ ell_1 $ -norm的制剂的最小化器能够正确地恢复基础精密矩阵的支持,而无需在$ \ ell_1 $ -norm中存在不连贯状态方法。涉及合成和实世界数据的实验表明,我们所提出的算法从计算时间透视比最先进的方法显着更有效。最后,我们在金融时序数据中应用我们的方法,这些数据对于显示积极依赖性,在那里我们在学习金融网络上的模块间值方面观察到显着性能。
translated by 谷歌翻译
我们介绍了一种牛顿型方法,可以从任何初始化和带有Lipschitz Hessians的任意凸面目标收敛。通过将立方规范化与某种自适应levenberg - Marquardt罚款合并来实现这一目标。特别地,我们表明由$ x ^ {k + 1} = x ^ k - \ bigl(\ nabla ^ 2 f(x ^ k)+ \ sqrt {h \ | \ nabla f(x ^ k)给出的迭代)\ |} \ mathbf {i} \ bigr)^ { - 1} \ nabla f(x ^ k)$,其中$ h> 0 $是一个常数,用$ \ mathcal {o}全球收敛(\ frac{1} {k ^ 2})$率。我们的方法是牛顿方法的第一个变体,具有廉价迭代和可怕的全球融合。此外,我们证明当目的强烈凸起时,本地我们的方法会收敛超连续。为了提高方法的性能,我们提供了一种不需要超参数的线路搜索程序,并且可提供高效。
translated by 谷歌翻译