在本文中,我们提出了端到端的水疗形式,以从单个阴影图像中恢复无阴影的图像。与需要两个步骤进行阴影检测然后再删除阴影的传统方法不同,Spa-Former将这些步骤统一为一个,这是一个单阶段网络,能够直接学习阴影和无阴影之间的映射功能,不需要一个单独的阴影检测。因此,SPA形式适应于实际图像去阴影,以适应投影在不同语义区域上的阴影。SPA形式由变压器层和一系列关节傅立叶变压残留块和两轮关节空间注意力组成。本文中的网络能够在达到非常快速的处理效率的同时处理任务。我们的代码在https://github.com/ zhangbaijin/spatial-transformer-shadow-removal上重新发布
translated by 谷歌翻译
旨在恢复图像中影子区域的原始强度,并使它们与剩余的非阴影区域兼容,而没有跟踪,删除阴影是一个非常具有挑战性的问题,使许多下游图像/视频相关的任务受益。最近,变形金刚通过捕获全局像素相互作用来显示它们在各种应用中的强大能力,并且这种能力在删除阴影时非常可取。然而,由于以下两个原因,应用变压器促进阴影去除是非平凡的:1)修补程序操作不适用于由于不规则的阴影形状而导致阴影去除; 2)阴影去除只需要从非阴影区域到阴影区域的单向交互,而不是图像中所有像素之间的共同双向相互作用。在本文中,我们提出了一种新型的跨区域变压器,即CRFormer,用于去除阴影,它与现有变压器的不同之处仅通过考虑从非阴影区域到阴影区域的像素相互作用而不将图像分为斑块。这是通过精心设计的区域感知的跨注意操作来实现的,该操作可以汇总以非阴影区域特征为条件的恢复的阴影区域特征。与其他最先进的方法相比,关于ISTD,AISTD,SRD和视频阴影删除数据集的广泛实验证明了我们方法的优势。
translated by 谷歌翻译
去除阴影的关键是通过非阴影区域的指导恢复阴影区域的内容。由于远程建模不足,基于CNN的方法无法彻底研究非阴影地区的信息。为了解决这个问题,我们提出了一个新颖的清洁效果图网络(CNSNET),并具有面向阴影的自适应归一化(SOAN)模块,并根据阴影蒙版带有带有变压器(SAAT)模块的阴影吸引的聚合。在影子面罩的指导下,Soan模块制定了非阴影区域的统计数据,并将它们适应到阴影区域以进行区域修复。 SAAT模块利用阴影面膜来精确指导每个阴影像素的修复,通过考虑来自无阴影区域的高度相关像素以进行全球像素恢复。在三个基准数据集(ISTD,ISTD+和SRD)上进行了广泛的实验表明,我们的方法可实现出色的脱落性能。
translated by 谷歌翻译
Most shadow removal methods rely on the invasion of training images associated with laborious and lavish shadow region annotations, leading to the increasing popularity of shadow image synthesis. However, the poor performance also stems from these synthesized images since they are often shadow-inauthentic and details-impaired. In this paper, we present a novel generation framework, referred to as HQSS, for high-quality pseudo shadow image synthesis. The given image is first decoupled into a shadow region identity and a non-shadow region identity. HQSS employs a shadow feature encoder and a generator to synthesize pseudo images. Specifically, the encoder extracts the shadow feature of a region identity which is then paired with another region identity to serve as the generator input to synthesize a pseudo image. The pseudo image is expected to have the shadow feature as its input shadow feature and as well as a real-like image detail as its input region identity. To fulfill this goal, we design three learning objectives. When the shadow feature and input region identity are from the same region identity, we propose a self-reconstruction loss that guides the generator to reconstruct an identical pseudo image as its input. When the shadow feature and input region identity are from different identities, we introduce an inter-reconstruction loss and a cycle-reconstruction loss to make sure that shadow characteristics and detail information can be well retained in the synthesized images. Our HQSS is observed to outperform the state-of-the-art methods on ISTD dataset, Video Shadow Removal dataset, and SRD dataset. The code is available at https://github.com/zysxmu/HQSS.
translated by 谷歌翻译
在许多收集的图像中,由于未经污染的图像对于许多下游多媒体任务至关重要,因此阴影删除引起了人们的关注。当前的方法考虑了阴影和非阴影区域的相同卷积操作,同时忽略了阴影区域和非阴影区域的颜色映射之间的巨大差距,从而导致重建图像的质量差和沉重的计算负担。为了解决这个问题,本文介绍了一个新颖的插件阴影感知动态卷积(SADC)模块,以使阴影区域与非阴影区域之间的相互依赖性解除。受到以下事实的启发:非阴影区域的颜色映射更易于学习,我们的SDC以计算上的轻巧卷积模块的方式处理非阴影区域,并以计算上的廉价方式处理,并使用更复杂的卷积模块恢复阴影区域图像重建的质量。鉴于非阴影区域通常包含更多背景颜色信息,我们进一步开发了一种新型的卷积内蒸馏损失,以增强从非阴影区域到阴影区域的信息流。在ISTD和SRD数据集上进行的广泛实验表明,我们的方法在许多最先进的情况下取得了更好的阴影去除性能。我们的代码可从https://github.com/xuyimin0926/sadc获得。
translated by 谷歌翻译
本文着重于当前过度参数化的阴影去除模型的局限性。我们提出了一个新颖的轻型深神经网络,该网络在实验室色彩空间中处理阴影图像。提出的称为“实验室网络”的网络是由以下三个观察结果激励的:首先,实验室颜色空间可以很好地分离亮度信息和颜色属性。其次,顺序堆叠的卷积层无法完全使用来自不同接受场的特征。第三,非阴影区域是重要的先验知识,可以减少阴影和非阴影区域之间的剧烈差异。因此,我们通过涉及两个分支结构的结构来设计实验室网络:L和AB分支。因此,与阴影相关的亮度信息可以很好地处理在L分支中,而颜色属性则很好地保留在AB分支中。此外,每个分支由几个基本块,局部空间注意模块(LSA)和卷积过滤器组成。每个基本块由多个平行的扩张扩张率的扩张卷积组成,以接收不同的接收场,这些接收场具有不同的网络宽度,以节省模型参数和计算成本。然后,构建了增强的通道注意模块(ECA),以从不同的接受场聚集特征,以更好地去除阴影。最后,进一步开发了LSA模块,以充分利用非阴影区域中的先前信息来清洁阴影区域。我们在ISTD和SRD数据集上执行广泛的实验。实验结果表明,我们的实验室网络井胜过最先进的方法。同样,我们的模型参数和计算成本降低了几个数量级。我们的代码可在https://github.com/ngrxmu/lab-net上找到。
translated by 谷歌翻译
Shadow removal improves the visual quality and legibility of digital copies of documents. However, document shadow removal remains an unresolved subject. Traditional techniques rely on heuristics that vary from situation to situation. Given the quality and quantity of current public datasets, the majority of neural network models are ill-equipped for this task. In this paper, we propose a Transformer-based model for document shadow removal that utilizes shadow context encoding and decoding in both shadow and shadow-free regions. Additionally, shadow detection and pixel-level enhancement are included in the whole coarse-to-fine process. On the basis of comprehensive benchmark evaluations, it is competitive with state-of-the-art methods.
translated by 谷歌翻译
卷积神经网络(CNN)和变压器在多媒体应用中取得了巨大成功。但是,几乎没有努力有效,有效地协调这两个架构以满足图像的范围。本文旨在统一这两种架构,以利用其学习优点来降低图像。特别是,CNN的局部连通性和翻译等效性以及变压器中自我注意力(SA)的全球聚合能力被完全利用用于特定的局部环境和全球结构表示。基于雨水分布揭示降解位置和程度的观察,我们在帮助背景恢复之前引入退化,并因此呈现关联细化方案。提出了一种新型的多输入注意模块(MAM),以将降雨的去除和背景恢复关联。此外,我们为模型配备了有效的深度可分离卷积,以学习特定的特征表示并权衡计算复杂性。广泛的实验表明,我们提出的方法(称为ELF)的表现平均比最先进的方法(MPRNET)优于0.25 dB,但仅占其计算成本和参数的11.7 \%和42.1 \%。源代码可从https://github.com/kuijiang94/magic-elf获得。
translated by 谷歌翻译
从单个图像中删除阴影通常仍然是一个开放的问题。大多数现有的基于学习的方法都使用监督的学习,并需要大量的配对图像(阴影和相应的非阴影图像)进行培训。最近的无监督方法,面具 - 饰面方法解决了这一限制。但是,它需要二进制掩码来表示阴影区域,从而使其不适合柔软的阴影。为了解决这个问题,在本文中,我们提出了一个无监督的域分类器引导删除网络DC-Shadownet。具体而言,我们建议将无阴影/无阴影域分类器集成到发电机及其歧视器中,从而使它们能够专注于阴影区域。为了训练我们的网络,我们引入了基于基于物理的无阴影色彩,阴影的感知特征和边界平滑度的新颖损失。此外,我们表明我们的无监督网络可用于测试时间培训,以进一步改善结果。我们的实验表明,所有这些新型组件允许我们的方法处理柔和的阴影,并且比现有的最新阴影去除方法在定量和定性上都能在硬阴影上表现更好。
translated by 谷歌翻译
Deep learning techniques have made considerable progress in image inpainting, restoration, and reconstruction in the last few years. Image outpainting, also known as image extrapolation, lacks attention and practical approaches to be fulfilled, owing to difficulties caused by large-scale area loss and less legitimate neighboring information. These difficulties have made outpainted images handled by most of the existing models unrealistic to human eyes and spatially inconsistent. When upsampling through deconvolution to generate fake content, the naive generation methods may lead to results lacking high-frequency details and structural authenticity. Therefore, as our novelties to handle image outpainting problems, we introduce structural prior as a condition to optimize the generation quality and a new semantic embedding term to enhance perceptual sanity. we propose a deep learning method based on Generative Adversarial Network (GAN) and condition edges as structural prior in order to assist the generation. We use a multi-phase adversarial training scheme that comprises edge inference training, contents inpainting training, and joint training. The newly added semantic embedding loss is proved effective in practice.
translated by 谷歌翻译
现有的DERANE方法主要集中于单个输入图像。只有单个输入图像,很难准确检测到雨条,去除雨条并恢复无雨图像。与单个2D图像相比,光场图像(LFI)通过通过元素摄像机记录每个事件射线的方向和位置,嵌入了广泛的3D结构和纹理信息,该镜头已成为计算机中的流行设备视觉和图形研究社区。在本文中,我们提出了一个新颖的网络4D-MGP-SRRNET,以从LFI中删除雨条。我们的方法将大雨LFI的所有子视图作为输入。为了充分利用LFI,我们采用4D卷积层来构建拟议的雨牛排清除网络,以同时处理LFI的所有子视图。在拟议的网络中,提出了带有新颖的多尺度自引导高斯工艺(MSGP)模块的雨水检测模型MGPDNET,以检测输入LFI的所有子视图中的雨条。引入了半监督的学习,以通过对虚拟世界LFI和现实世界中的LFI进行多个尺度上的虚拟世界LFI和现实世界中的LFI来准确检测雨季,这是通过计算现实世界中雨水条纹的伪地面真相。然后,所有减去预测的雨条的子视图都将馈送到4D残差模型中,以估计深度图。最后,所有子视图与相应的雨条和从估计的深度图转换的相应雨条和雾图都馈送到基于对抗性复发性神经网络的雨天LFI恢复模型,以逐步消除雨水条纹并恢复无雨的LFI LFI LFI。 。对合成LFI和现实世界LFI进行的广泛的定量和定性评估证明了我们提出的方法的有效性。
translated by 谷歌翻译
由于卷积神经网络(CNNS)在从大规模数据中进行了学习的可概括图像前沿执行井,因此这些模型已被广泛地应用于图像恢复和相关任务。最近,另一类神经架构,变形金刚表现出对自然语言和高级视觉任务的显着性能。虽然变压器模型减轻了CNNS的缺点(即,有限的接收领域并对输入内容而无关),但其计算复杂性以空间分辨率二次大转,因此可以对涉及高分辨率图像的大多数图像恢复任务应用得不可行。在这项工作中,我们通过在构建块(多头关注和前锋网络)中进行多个关键设计,提出了一种有效的变压器模型,使得它可以捕获远程像素相互作用,同时仍然适用于大图像。我们的模型,命名恢复变压器(RESTORMER),实现了最先进的结果,导致几种图像恢复任务,包括图像派生,单图像运动脱棕,散焦去纹(单图像和双像素数据)和图像去噪(高斯灰度/颜色去噪,真实的图像去噪)。源代码和预先训练的型号可在https://github.com/swz30/restormer上获得。
translated by 谷歌翻译
我们提出了一种新颖的暗影拆除深层学习方法。灵感来自暗影形成的物理模型,我们使用线性照明变换来模拟图像中的阴影效果,允许阴影图像表示为无影子图像,阴影参数和遮罩层的组合。我们使用两个深网络,即SP-Net和M-Net,分别预测阴影参数和阴影遮罩。该系统允许我们删除图像的影子效果。然后,我们采用了一个素食网络,I-Net,以进一步改进结果。我们在最具挑战性的阴影删除数据集(ISTD)上培训并测试我们的框架。我们的方法通过20 \%的阴影区域的根均线误差(RMSE)来改善最先进的。此外,这种分解允许我们制定基于补丁的弱监督暗影去除方法。这种型号可以培训,没有任何暗影图像(非常麻烦的图像),与使用完全配对的阴影和无影子图像训练的最先进的方法相比,实现了竞争阴影去除结果。最后,我们介绍了SBU-timelapse,一个视频阴影删除数据集,用于评估阴影清除方法。
translated by 谷歌翻译
With the development of convolutional neural networks, hundreds of deep learning based dehazing methods have been proposed. In this paper, we provide a comprehensive survey on supervised, semi-supervised, and unsupervised single image dehazing. We first discuss the physical model, datasets, network modules, loss functions, and evaluation metrics that are commonly used. Then, the main contributions of various dehazing algorithms are categorized and summarized. Further, quantitative and qualitative experiments of various baseline methods are carried out. Finally, the unsolved issues and challenges that can inspire the future research are pointed out. A collection of useful dehazing materials is available at \url{https://github.com/Xiaofeng-life/AwesomeDehazing}.
translated by 谷歌翻译
卷积神经网络(CNNS)成功地进行了压缩图像感测。然而,由于局部性和重量共享的归纳偏差,卷积操作证明了建模远程依赖性的内在限制。变压器,最初作为序列到序列模型设计,在捕获由于基于自我关注的架构而捕获的全局背景中,即使它可以配备有限的本地化能力。本文提出了一种混合框架,一个混合框架,其集成了从CNN提供的借用的优点以及变压器提供的全局上下文,以获得增强的表示学习。所提出的方法是由自适应采样和恢复组成的端到端压缩图像感测方法。在采样模块中,通过学习的采样矩阵测量图像逐块。在重建阶段,将测量投射到双杆中。一个是用于通过卷积建模邻域关系的CNN杆,另一个是用于采用全球自我关注机制的变压器杆。双分支结构是并发,并且本地特征和全局表示在不同的分辨率下融合,以最大化功能的互补性。此外,我们探索一个渐进的战略和基于窗口的变压器块,以降低参数和计算复杂性。实验结果表明了基于专用变压器的架构进行压缩感测的有效性,与不同数据集的最先进方法相比,实现了卓越的性能。
translated by 谷歌翻译
虽然对图像背景恢复的研究从常规大小的降级图像恢复已经取得了显着的进步,但由于计算复杂性和记忆使用情况的爆炸式增长以及缺陷,恢复超高分辨率(例如4K)图像仍然是一项极具挑战性的任务。带注释的数据。在本文中,我们提出了一种用于超高分辨率图像恢复的新型模型,称为全局逐步生成网络(GLSGN),该模型采用涉及四个恢复途径的逐步恢复策略:三个局部途径和一条全球途径。本地途径着重于以局部但高分辨率的图像贴片的细粒度进行图像恢复,而全球途径则在缩放尺寸但完整的图像上执行图像恢复,以在全球视图中为本地途径提供线索包括语义和噪声模式。为了平滑这四个途径之间的相互协作,我们的GLSGN旨在确保在低级内容,感知注意力,恢复强度和高级语义方面的四个方面的跨道路一致性。作为这项工作的另一个主要贡献,我们还介绍了迄今为止的第一个超高分辨率数据集,以删除反射和降雨条纹,包括4,670个现实世界和合成图像。跨三个典型的图像背景修复任务进行的广泛实验,包括删除图像反射,删除图像雨条和图像去悬来表明我们的GLSGN始终优于最先进的方法。
translated by 谷歌翻译
高动态范围(HDR)成像是一种允许广泛的动态曝光范围的技术,这在图像处理,计算机图形和计算机视觉中很重要。近年来,使用深度学习(DL),HDR成像有重大进展。本研究对深层HDR成像方法的最新发展进行了综合和富有洞察力的调查和分析。在分层和结构上,将现有的深层HDR成像方法基于(1)输入曝光的数量/域,(2)学习任务数,(3)新传感器数据,(4)新的学习策略,(5)应用程序。重要的是,我们对关于其潜在和挑战的每个类别提供建设性的讨论。此外,我们审查了深度HDR成像的一些关键方面,例如数据集和评估指标。最后,我们突出了一些打开的问题,并指出了未来的研究方向。
translated by 谷歌翻译
Recent deep learning methods have achieved promising results in image shadow removal. However, their restored images still suffer from unsatisfactory boundary artifacts, due to the lack of degradation prior embedding and the deficiency in modeling capacity. Our work addresses these issues by proposing a unified diffusion framework that integrates both the image and degradation priors for highly effective shadow removal. In detail, we first propose a shadow degradation model, which inspires us to build a novel unrolling diffusion model, dubbed ShandowDiffusion. It remarkably improves the model's capacity in shadow removal via progressively refining the desired output with both degradation prior and diffusive generative prior, which by nature can serve as a new strong baseline for image restoration. Furthermore, ShadowDiffusion progressively refines the estimated shadow mask as an auxiliary task of the diffusion generator, which leads to more accurate and robust shadow-free image generation. We conduct extensive experiments on three popular public datasets, including ISTD, ISTD+, and SRD, to validate our method's effectiveness. Compared to the state-of-the-art methods, our model achieves a significant improvement in terms of PSNR, increasing from 31.69dB to 34.73dB over SRD dataset.
translated by 谷歌翻译
基于对抗性学习的图像抑制方法,由于其出色的性能,已经在计算机视觉中进行了广泛的研究。但是,大多数现有方法对实际情况的质量功能有限,因为它们在相同场景的透明和合成的雾化图像上进行了培训。此外,它们在保留鲜艳的色彩和丰富的文本细节方面存在局限性。为了解决这些问题,我们开发了一个新颖的生成对抗网络,称为整体注意力融合对抗网络(HAAN),用于单个图像。 Haan由Fog2FogFogre块和FogFree2Fog块组成。在每个块中,有三个基于学习的模块,即雾除雾,颜色纹理恢复和雾合成,它们相互限制以生成高质量的图像。 Haan旨在通过学习雾图图像之间的整体通道空间特征相关性及其几个派生图像之间的整体通道空间特征相关性来利用纹理和结构信息的自相似性。此外,在雾合成模块中,我们利用大气散射模型来指导它,以通过新颖的天空分割网络专注于大气光优化来提高生成质量。关于合成和现实世界数据集的广泛实验表明,就定量准确性和主观的视觉质量而言,Haan的表现优于最先进的脱落方法。
translated by 谷歌翻译
场景文本擦除,它在自然图像中替换了具有合理内容的文本区域,近年来在计算机视觉社区中造成了重大关注。场景文本删除中有两个潜在的子任务:文本检测和图像修复。两个子任务都需要相当多的数据来实现更好的性能;但是,缺乏大型现实世界场景文本删除数据集不允许现有方法实现其潜力。为了弥补缺乏成对的真实世界数据,我们在额外的增强后大大使用了合成文本,随后仅在改进的合成文本引擎生成的数据集上培训了我们的模型。我们所提出的网络包含一个笔划掩模预测模块和背景染色模块,可以从裁剪文本图像中提取文本笔划作为相对较小的孔,以维持更多的背景内容以获得更好的修复结果。该模型可以用边界框部分删除场景图像中的文本实例,或者使用现有场景文本检测器进行自动场景文本擦除。 SCUT-SYN,ICDAR2013和SCUT-ENSTEXT数据集的定性和定量评估的实验结果表明,即使在现实世界数据上培训,我们的方法也显着优于现有的最先进的方法。
translated by 谷歌翻译