域的概括(DG)旨在学习分配变化的可推广模型,以避免重新拟合大规模训练数据。以前具有复杂损失设计和梯度约束的作品尚未在大规模基准上取得经验成功。在这项工作中,我们通过利用跨域跨域的预测特征的多个方面来揭示Experts(MOE)模型对DG的概括性的混合物。为此,我们提出了稀疏的融合混合物(SF-MOE),该混合物将稀疏性和融合机制纳入MOE框架中,以使模型保持稀疏和预测性。 SF-MOE有两个专用模块:1)稀疏块和2)融合块,它们分别分别分离和汇总对象的多样化信号。广泛的实验表明,SF-MOE是大规模基准的域名学习者。在5个大规模的DG数据集(例如域内)中,它的表现优于最佳同行,其计算成本相同甚至较低。我们从分布式表示的角度(例如,视觉属性)进一步揭示了SF-MOE的内部机制。我们希望这个框架可以促进未来的研究,将可普遍的对象识别推向现实世界。代码和模型在https://github.com/luodian/sf-moe-dg上发布。
translated by 谷歌翻译
机器学习系统通常假设训练和测试分布是相同的。为此,关键要求是开发可以概括到未经看不见的分布的模型。领域泛化(DG),即分销概括,近年来引起了越来越令人利益。域概括处理了一个具有挑战性的设置,其中给出了一个或几个不同但相关域,并且目标是学习可以概括到看不见的测试域的模型。多年来,域概括地区已经取得了巨大进展。本文提出了对该地区最近进步的首次审查。首先,我们提供了域泛化的正式定义,并讨论了几个相关领域。然后,我们彻底审查了与域泛化相关的理论,并仔细分析了泛化背后的理论。我们将最近的算法分为三个类:数据操作,表示学习和学习策略,并为每个类别详细介绍几种流行的算法。第三,我们介绍常用的数据集,应用程序和我们的开放源代码库进行公平评估。最后,我们总结了现有文学,并为未来提供了一些潜在的研究主题。
translated by 谷歌翻译
分发班次的稳健性对于部署现实世界中的机器学习模型至关重要。尽管如此必要的,但在定义导致这些变化的潜在机制以及评估跨多个不同的分发班次的稳健性的潜在机制很少。为此,我们介绍了一种框架,可实现各种分布换档的细粒度分析。我们通过评估在合成和现实世界数据集中分为五个类别的19个不同的方法来提供对当前最先进的方法的整体分析。总的来说,我们训练超过85架模型。我们的实验框架可以很容易地扩展到包括新方法,班次和数据集。我们发现,与以前的工作〜\ citep {gulrajani20}不同,该进度已经通过标准的ERM基线进行;特别是,在许多情况下,预先训练和增强(学习或启发式)提供了大的收益。但是,最好的方法在不同的数据集和班次上不一致。
translated by 谷歌翻译
最近,已经提出了几种领域的概括(DG)方法,表现出令人鼓舞的性能,但是,几乎所有的都基于卷积神经网络(CNN)。研究视觉变压器(VIT)的DG性能(VIT)几乎没有进展,这挑战了CNN在标准基准测试基准上的至高无上,通常是基于I.I.D假设。这使VITS的现实部署令人怀疑。在本文中,我们试图探索解决DG问题的VIT。与CNN类似,VIT在分发场景中也挣扎,主要的罪魁祸首过于适合来源域。受VIT的模块化体系结构的启发,我们提出了一种简单的DG方法,用于VIT,以VIT的自我验证。它通过策划中间变压器块的非零熵监管信号来减少输入输出映射问题的学习来减少源域的过度拟合。此外,它不会引入任何新参数,并且可以无缝地插入不同VIT的模块化组成中。我们在五个具有挑战性的数据集中以不同的DG基准和各种VIT骨架表现出显着的性能提高。此外,我们报告了针对最近最新的DG方法的有利性能。我们的代码以及预培训的模型可在以下网址公开获取:https://github.com/maryam089/sdvit
translated by 谷歌翻译
优化从看不见域的样本上的分类器的性能仍然是一个具有挑战性的问题。虽然大多数关于域泛化的研究侧重于学习域名特征表示,但已经提出了多专家框架作为可能的解决方案,并且已经表现出了有希望的性能。但是,当前的多专家学习框架在推理期间未能充分利用源域知识,从而导致次优性能。在这项工作中,我们建议适应变压器,以便动态解码域泛化的源域知识。具体来说,我们将一个特定于域的本地专家域每个源域和一个域 - 不可知要素分支为查询。变压器编码器将所有域特定功能编码为内存中的源域知识。在变压器解码器中,域名忽视查询与跨关注模块中的存储器交互,并且类似于输入的域将有助于注意输出。因此,源域知识得到动态解码,以推动来自未经看不见的域的电流输入。该机制使得提出的方法能够概括到看不见的域。所提出的方法已经在域泛化领域的三个基准中进行了评估,并与最先进的方法相比,具有最佳性能。
translated by 谷歌翻译
尽管机器学习模型迅速推进了各种现实世界任务的最先进,但鉴于这些模型对虚假相关性的脆弱性,跨域(OOD)的概括仍然是一个挑战性的问题。尽管当前的域概括方法通常着重于通过新的损耗函数设计在不同域上实施某些不变性属性,但我们提出了一种平衡的迷你批次采样策略,以减少观察到的训练分布中域特异性的虚假相关性。更具体地说,我们提出了一种两步方法,该方法1)识别虚假相关性的来源,以及2)通过在确定的来源上匹配,构建平衡的迷你批次而没有虚假相关性。我们提供了伪造来源的可识别性保证,并表明我们提出的方法是从所有培训环境中平衡,无虚拟分布的样本。实验是在三个具有伪造相关性的计算机视觉数据集上进行的,从经验上证明,与随机的迷你批次采样策略相比,我们平衡的微型批次采样策略可改善四个不同建立的域泛化模型基线的性能。
translated by 谷歌翻译
旨在概括在源域中训练的模型来看不见的目标域,域泛化(DG)最近引起了很多关注。 DG的关键问题是如何防止对观察到的源极域的过度接收,因为在培训期间目标域不可用。我们调查过度拟合不仅导致未经看不见的目标域的普遍推广能力,而且在测试阶段导致不稳定的预测。在本文中,我们观察到,在训练阶段采样多个任务并在测试阶段产生增强图像,很大程度上有利于泛化性能。因此,通过处理不同视图的任务和图像,我们提出了一种新颖的多视图DG框架。具体地,在训练阶段,为了提高泛化能力,我们开发了一种多视图正则化元学习算法,该算法采用多个任务在更新模型期间产生合适的优化方向。在测试阶段,为了减轻不稳定的预测,我们利用多个增强图像来产生多视图预测,这通过熔断测试图像的不同视图的结果显着促进了模型可靠性。三个基准数据集的广泛实验验证了我们的方法优于几种最先进的方法。
translated by 谷歌翻译
域泛化(DG)的主要挑战是克服多个训练域和看不见的测试域之间的潜在分布偏移。一类流行的DG算法旨在学习在训练域中具有不变因果关系的表示。但是,某些特征,称为\ emph {伪不变特征},可能是培训域中的不变性,但不是测试域,并且可以大大降低现有算法的性能。为了解决这个问题,我们提出了一种新颖的算法,称为不变信息瓶颈(IIB),该算法学习跨越训练和测试域的最小值的最小值。通过最大限度地减少表示和输入之间的相互信息,IIB可以减轻其对伪不变特征的依赖,这对于DG是期望的。为了验证IIB原则的有效性,我们对大型DG基准进行了广泛的实验。结果表明,在两个评估度量标准中,IIB的IIIb平均超过2.8 \%和3.8 \%的准确性。
translated by 谷歌翻译
域的概括(DG)研究了深度学习模型推广到训练分布的能力。在过去的十年中,文献已经大量填充了一系列培训方法,这些方法声称获得了更抽象和强大的数据表示以应对域的转移。最近的研究为DG提供了可再现的基准,指出了天真的经验风险最小化(ERM)对现有算法的有效性。然而,研究人员坚持使用相同过时的特征提取器,并且尚未注意不同骨干的影响。在本文中,我们从骨干开始,提出了对其内在概括能力的全面分析,迄今为止,研究界忽略了。我们评估了各种特征提取器,从标准残差解决方案到基于变压器的架构,发现大规模单域分类精度和DG功能之间的线性相关性。我们广泛的实验表明,通过采用竞争性骨干与有效的数据增强结合使用,普通ERM的表现优于最近的DG解决方案,并实现了最先进的准确性。此外,我们的其他定性研究表明,新型骨架提供了与同类样本更相似的表示,从而将特征空间中的不同域分开。这种概括能力的增强功能使DG算法的边缘空间为调查问题,提出了一个新的范式,将骨干放在聚光灯下,并鼓励在其顶部开发一致的算法。
translated by 谷歌翻译
分销转移(DS)是一个常见的问题,可恶化学习机器的性能。为了克服这个问题,我们假设现实世界的分布是由基本分布组成的,这些分布在不同域之间保持不变。我们将其称为不变的基本分布(即)假设。因此,这种不变性使知识转移到看不见的域。为了利用该假设在域概括(DG)中,我们开发了一个由门域单位(GDU)组成的模块化神经网络层。每个GDU都学会了单个基本领域的嵌入,使我们能够在训练过程中编码域相似性。在推断期间,GDU在观察和每个相应的基本分布之间进行了计算相似性,然后将其用于形成学习机的加权集合。由于我们的层是经过反向传播的训练,因此可以轻松地集成到现有的深度学习框架中。我们对Digits5,ECG,CamelyOn17,IwildCam和FMOW的评估显示出对训练的目标域的性能有显着改善,而无需从目标域访问数据。这一发现支持了即现实世界数据分布中的假设。
translated by 谷歌翻译
尽管视觉变压器(VIT)表现出令人印象深刻的表示学习能力,但我们从经验上发现,它们不能很好地将其概括为具有以前的域泛化算法的看不见的域。在本文中,我们提出了一种基于迅速学习的新方法,以嵌入域中的源域的知识提示目标域预测。具体而言,在来自相应的源域中的VIT输入令牌之前先进行域提示。每个域提示都可以有效地学习特定于领域的知识,因为仅针对一个域进行了优化。同时,我们训练一个及时的适配器,根据学习的源域提示为每个输入图像生成适当的提示。在测试时,提示适配器生成的改编提示可以利用室外图像和源域的特征之间的相似性,以正确整合源域知识。广泛的实验是在四个基准数据集上进行的。我们的方法在平均准确性方面提高了1.4%,这是使用VIT主链改善最先进算法的3.5倍。
translated by 谷歌翻译
最近证明,接受SGD训练的神经网络优先依赖线性预测的特征,并且可以忽略复杂的,同样可预测的功能。这种简单性偏见可以解释他们缺乏分布(OOD)的鲁棒性。学习任务越复杂,统计工件(即选择偏见,虚假相关性)的可能性就越大比学习的机制更简单。我们证明可以减轻简单性偏差并改善了OOD的概括。我们使用对其输入梯度对齐的惩罚来训练一组类似的模型以不同的方式拟合数据。我们从理论和经验上展示了这会导致学习更复杂的预测模式的学习。 OOD的概括从根本上需要超出I.I.D.示例,例如多个培训环境,反事实示例或其他侧面信息。我们的方法表明,我们可以将此要求推迟到独立的模型选择阶段。我们获得了SOTA的结果,可以在视觉域偏置数据和概括方面进行视觉识别。该方法 - 第一个逃避简单性偏见的方法 - 突出了需要更好地理解和控制深度学习中的归纳偏见。
translated by 谷歌翻译
尽管最近在欧几里得数据(例如图像)上使用不变性原理(OOD)概括(例如图像),但有关图数据的研究仍然受到限制。与图像不同,图形的复杂性质给采用不变性原理带来了独特的挑战。特别是,图表上的分布变化可以以多种形式出现,例如属性和结构,因此很难识别不变性。此外,在欧几里得数据上通常需要的域或环境分区通常需要的图形可能非常昂贵。为了弥合这一差距,我们提出了一个新的框架,以捕获图形的不变性,以在各种分配变化下进行保证的OOD概括。具体而言,我们表征了具有因果模型的图形上的潜在分布变化,得出结论,当模型仅关注包含有关标签原因最多信息的子图时,可以实现图形上的OOD概括。因此,我们提出了一个信息理论目标,以提取最大地保留不变的阶级信息的所需子图。用这些子图学习不受分配变化的影响。对合成和现实世界数据集进行的广泛实验,包括在AI ADED药物发现中充满挑战的环境,验证了我们方法的上等OOD概括能力。
translated by 谷歌翻译
机器学习算法通常假设培训和测试示例是从相同的分布中汲取的。然而,分发转移是现实世界应用中的常见问题,并且可以在测试时间造成模型急剧执行。在本文中,我们特别考虑域移位和亚泊素班次的问题(例如,不平衡数据)。虽然先前的作品通常会寻求明确地将模型的内部表示和预测器进行明确,以成为域不变的,但我们旨在规范整个功能而不限制模型的内部表示。这导致了一种简单的基于混合技术,它通过名为LISA的选择性增强来学习不变函数。 Lisa选择性地用相同的标签而单独地插值样本,但不同的域或具有相同的域但不同的标签。我们分析了线性设置,从理论上展示了LISA如何导致较小的最差组错误。凭经验,我们研究了LISA对从亚本化转变到域移位的九个基准的有效性,我们发现LISA一直以其他最先进的方法表达。
translated by 谷歌翻译
域泛化(DG)方法旨在开发概括到测试分布与训练数据不同的设置的模型。在本文中,我们专注于多源零拍DG的挑战性问题,其中来自多个源域的标记训练数据可用,但无法从目标域中访问数据。虽然这个问题已成为研究的重要话题,但令人惊讶的是,将所有源数据汇集在一起​​和培训单个分类器的简单解决方案在标准基准中具有竞争力。更重要的是,即使在不同域中明确地优化不变性的复杂方法也不一定提供对ERM的非微不足道的增益。在本文中,我们首次研究了预先指定的域标签和泛化性能之间的重要链接。使用动机案例研究和分布稳健优化算法的新变种,我们首先演示了如何推断的自定义域组可以通过数据集的原始域标签来实现一致的改进。随后,我们介绍了一种用于多域泛化,Muldens的一般方法,它使用基于ERM的深度合并骨干,并通过元优化算法执行隐式域重标。使用对多个标准基准测试的经验研究,我们表明Muldens不需要定制增强策略或特定于数据集的培训过程,始终如一地优于ERM,通过显着的边距,即使在比较时也会产生最先进的泛化性能对于利用域标签的现有方法。
translated by 谷歌翻译
通过推断培训数据中的潜在群体,最近的作品将不可用的注释不可用的情况引入不变性学习。通常,在大多数/少数族裔分裂下学习群体不变性在经验上被证明可以有效地改善许多数据集的分布泛化。但是,缺乏这些关于学习不变机制的理论保证。在本文中,我们揭示了在防止分类器依赖于培训集中的虚假相关性的情况下,现有小组不变学习方法的不足。具体来说,我们提出了两个关于判断这种充分性的标准。从理论和经验上讲,我们表明现有方法可以违反标准,因此未能推广出虚假的相关性转移。在此激励的情况下,我们设计了一种新的组不变学习方法,该方法构建具有统计独立性测试的组,并按组标签重新启动样本,以满足标准。关于合成数据和真实数据的实验表明,新方法在推广到虚假相关性转移方面显着优于现有的组不变学习方法。
translated by 谷歌翻译
域的概括(DG)旨在仅使用有限的源域学习一个通用模型。先前的DG尝试仅由于训练和测试域之间的显着域移动而无法从源域中学习域不变表示。取而代之的是,我们使用Oracle模型使用共同信息重新构建了DG目标,该模型将概括为任何可能的域。我们通过通过预训练的模型近似oracle模型来得出一个可拖动的变化下限,称为使用Oracle(Miro)的相互信息正则化。我们的广泛实验表明,Miro可显着提高分布性能。此外,我们的缩放实验表明,预训练模型的尺度越大,miro的性能提高就越大。源代码可在https://github.com/kakaobrain/miro中获得。
translated by 谷歌翻译
对分布(OOD)数据的概括是人类自然的能力,但对于机器而言挑战。这是因为大多数学习算法强烈依赖于i.i.d.〜对源/目标数据的假设,这在域转移导致的实践中通常会违反。域的概括(DG)旨在通过仅使用源数据进行模型学习来实现OOD的概括。在过去的十年中,DG的研究取得了长足的进步,导致了广泛的方法论,例如,基于域的一致性,元学习,数据增强或合奏学习的方法,仅举几例;还在各个应用领域进行了研究,包括计算机视觉,语音识别,自然语言处理,医学成像和强化学习。在本文中,首次提供了DG中的全面文献综述,以总结过去十年来的发展。具体而言,我们首先通过正式定义DG并将其与其他相关领域(如域适应和转移学习)联系起来来涵盖背景。然后,我们对现有方法和理论进行了彻底的审查。最后,我们通过有关未来研究方向的见解和讨论来总结这项调查。
translated by 谷歌翻译
Machine learning models rely on various assumptions to attain high accuracy. One of the preliminary assumptions of these models is the independent and identical distribution, which suggests that the train and test data are sampled from the same distribution. However, this assumption seldom holds in the real world due to distribution shifts. As a result models that rely on this assumption exhibit poor generalization capabilities. Over the recent years, dedicated efforts have been made to improve the generalization capabilities of these models collectively known as -- \textit{domain generalization methods}. The primary idea behind these methods is to identify stable features or mechanisms that remain invariant across the different distributions. Many generalization approaches employ causal theories to describe invariance since causality and invariance are inextricably intertwined. However, current surveys deal with the causality-aware domain generalization methods on a very high-level. Furthermore, we argue that it is possible to categorize the methods based on how causality is leveraged in that method and in which part of the model pipeline is it used. To this end, we categorize the causal domain generalization methods into three categories, namely, (i) Invariance via Causal Data Augmentation methods which are applied during the data pre-processing stage, (ii) Invariance via Causal representation learning methods that are utilized during the representation learning stage, and (iii) Invariance via Transferring Causal mechanisms methods that are applied during the classification stage of the pipeline. Furthermore, this survey includes in-depth insights into benchmark datasets and code repositories for domain generalization methods. We conclude the survey with insights and discussions on future directions.
translated by 谷歌翻译
在过去的几年中,深度学习取得了巨大的成功。但是,面对非IID情况,深度学习的表现可能会阻碍。域的概括(DG)使模型可以概括为看不见的测试分布,即学习域不变表示。在本文中,我们认为域不变的特征应起源于内部和相互侧面。内部不变性意味着可以通过单个域学习这些功能,并且该功能捕获了数据的内在语义,即在域内的属性,这是其他域的不可知论。相互不变性意味着可以通过多个域(跨域)学习这些特征,并且功能包含常见信息,即可转移的功能W.R.T.其他域。然后,我们为域不变特征探索提出了DIFEX。 DIFEX采用知识蒸馏框架来捕获高级傅立叶相,作为内部不变的特征,并将跨域相关对准作为相互不变的特征。我们进一步设计了探索损失,以增加功能多样性以更好地概括。对时间序列和视觉基准测试的广泛实验表明,所提出的DIFEX实现了最先进的性能。
translated by 谷歌翻译