Existing deep learning-based traffic forecasting models are mainly trained with MSE (or MAE) as the loss function, assuming that residuals/errors follow independent and isotropic Gaussian (or Laplacian) distribution for simplicity. However, this assumption rarely holds for real-world traffic forecasting tasks, where the unexplained residuals are often correlated in both space and time. In this study, we propose Spatiotemporal Residual Regularization by modeling residuals with a dynamic (e.g., time-varying) mixture of zero-mean multivariate Gaussian distribution with learnable spatiotemporal covariance matrices. This approach allows us to directly capture spatiotemporally correlated residuals. For scalability, we model the spatiotemporal covariance for each mixture component using a Kronecker product structure, which significantly reduces the number of parameters and computation complexity. We evaluate the performance of the proposed method on a traffic speed forecasting task. Our results show that, by properly modeling residual distribution, the proposed method not only improves the model performance but also provides interpretable structures.
translated by 谷歌翻译
预测交通状况非常具有挑战性,因为每条道路在空间和时间上都高度依赖。最近,为了捕获这种空间和时间依赖性,已经引入了专门设计的架构,例如图形卷积网络和时间卷积网络。尽管流量预测取得了显着进展,但我们发现基于深度学习的流量预测模型仍然在某些模式中失败,主要是在事件情况下(例如,快速速度下降)。尽管通常认为这些故障是由于不可预测的噪声造成的,但我们发现可以通过考虑以前的失败来纠正这些故障。具体而言,我们观察到这些失败中的自相关错误,这表明仍然存在一些可预测的信息。在这项研究中,为了捕获错误的相关性,我们引入了Rescal,Rescal是流量预测的剩余估计模块,作为广泛适用的附加模块,用于现有的流量预测模型。我们的恢复通过使用以前的错误和图形信号来估算未来错误,从而实时校准现有模型的预测。对METR-LA和PEMS-BAY进行的广泛实验表明,我们的恢复可以正确捕获错误的相关性,并在事件情况下纠正各种流量预测模型的故障。
translated by 谷歌翻译
多维时空数据的概率建模对于许多现实世界应用至关重要。然而,现实世界时空数据通常表现出非平稳性的复杂依赖性,即相关结构随位置/时间而变化,并且在空间和时间之间存在不可分割的依赖性,即依赖关系。开发有效和计算有效的统计模型,以适应包含远程和短期变化的非平稳/不可分割的过程,成为一项艰巨的任务,尤其是对于具有各种腐败/缺失结构的大规模数据集。在本文中,我们提出了一个新的统计框架 - 贝叶斯互补内核学习(BCKL),以实现多维时空数据的可扩展概率建模。为了有效地描述复杂的依赖性,BCKL与短距离时空高斯过程(GP)相结合的内核低级分解(GP),其中两个组件相互补充。具体而言,我们使用多线性低级分组组件来捕获数据中的全局/远程相关性,并基于紧凑的核心函数引入加法短尺度GP,以表征其余的局部变异性。我们为模型推断开发了有效的马尔可夫链蒙特卡洛(MCMC)算法,并在合成和现实世界时空数据集上评估了所提出的BCKL框架。我们的结果证实了BCKL在提供准确的后均值和高质量不确定性估计方面的出色表现。
translated by 谷歌翻译
Spatiotemporal forecasting has various applications in neuroscience, climate and transportation domain. Traffic forecasting is one canonical example of such learning task. The task is challenging due to (1) complex spatial dependency on road networks, (2) non-linear temporal dynamics with changing road conditions and (3) inherent difficulty of long-term forecasting. To address these challenges, we propose to model the traffic flow as a diffusion process on a directed graph and introduce Diffusion Convolutional Recurrent Neural Network (DCRNN), a deep learning framework for traffic forecasting that incorporates both spatial and temporal dependency in the traffic flow. Specifically, DCRNN captures the spatial dependency using bidirectional random walks on the graph, and the temporal dependency using the encoder-decoder architecture with scheduled sampling. We evaluate the framework on two real-world large scale road network traffic datasets and observe consistent improvement of 12% -15% over state-of-the-art baselines.
translated by 谷歌翻译
由于动态和复杂的时空依赖性,交通预测具有挑战性。但是,现有方法仍然受到两个关键局限性。首先,许多方法通常使用静态预定义或自适应的空间图来捕获流量系统中动态的时空依赖性,这限制了灵活性,并且仅捕获了整个时间的共享模式,从而导致了次优性能。此外,大多数方法在每个时间步骤中都单独和独立地考虑地面真理与预测之间的绝对误差,这无法维持整体时间序列的全球属性和统计数据,并导致地面真相和预测之间的趋势差异。为此,在本文中,我们提出了一个动态自适应和对抗图卷积网络(DAAGCN),该网络将图形卷积网络(GCN)与生成的对抗网络(GANS)结合在一起,以进行流量预测。具体而言,DAAGCN利用带栅极模块的通用范式将时间变化的嵌入与节点嵌入集成在一起,以生成动态自适应图,以在每个时间步骤中推断空间 - 周期依赖性。然后,设计了两个歧视因子,以维持预测时间序列的全局属性的一致性,并在序列和图形级别上具有地面真相。在四个基准数据集上进行的广泛实验表明,DAAGCN的表现平均比最新的5.05%,3.80%和5.27%在MAE,RMSE和MAPE方面,同时加快收敛性高达9倍。代码可从https://github.com/juyongjiang/daagcn获得。
translated by 谷歌翻译
多变量时间序列预测是一个具有挑战性的任务,因为数据涉及长期和短期模式的混合,具有变量之间的动态时空依赖性。现有图形神经网络(GNN)通常与预定义的空间图或学习的固定邻接图模拟多变量关系。它限制了GNN的应用,并且无法处理上述挑战。在本文中,我们提出了一种新颖的框架,即静态和动态图形学习 - 神经网络(SDGL)。该模型分别从数据获取静态和动态图形矩阵分别为模型长期和短期模式。开发静态Matric以通过节点嵌入捕获固定的长期关联模式,并利用图规律性来控制学习静态图的质量。为了捕获变量之间的动态依赖性,我们提出了基于改变节点特征和静态节点Embeddings生成时变矩阵的动态图。在该方法中,我们将学习的静态图信息作为感应偏置集成为诱导动态图和局部时空模式更好。广泛的实验是在两个交通数据集中进行,具有额外的结构信息和四个时间序列数据集,这表明我们的方法在几乎所有数据集上实现了最先进的性能。如果纸张被接受,我将在GitHub上打开源代码。
translated by 谷歌翻译
交通流量的技术预测在智能运输系统中起着重要作用。基于图形神经网络和注意机制,大多数先前的作品都利用变压器结构来发现时空依赖性和动态关系。但是,他们尚未彻底考虑时空序列之间的相关信息。在本文中,基于最大信息系数,我们提出了两种详尽的时空表示,空间相关信息(SCORR)和时间相关信息(TCORR)。使用SCORR,我们提出了一个基于相关信息的时空网络(CORRSTN),该网络包括一个动态图神经网络组件,可有效地将相关信息整合到空间结构中,以及一个多头注意力组件,以准确地对动态时间依赖性进行建模。利用TCORR,我们探索了不同周期数据之间的相关模式,以识别最相关的数据,然后设计有效的数据选择方案以进一步增强模型性能。公路交通流量(PEMS07和PEMS08)和地铁人群流(HZME流入和流出)数据集的实验结果表明,Corrstn在预测性能方面表现出了最先进的方法。特别是,在HZME(流出)数据集上,与ASTGNN模型相比,我们的模型在MAE,RMSE和MAPE的指标中分别提高了12.7%,14.4%和27.4%。
translated by 谷歌翻译
准确的交通预测对于智能运输系统至关重要。尽管许多深度学习模型已经达到了最新的1小时交通预测,但长期交通预测跨越多小时仍然是一个重大挑战。此外,大多数现有的深度学习流量预测模型都是黑匣子,提出了与解释性和解释性有关的其他挑战。我们开发了图形金字塔自动构造(X-GPA),这是一种基于注意力的空间 - 速率图神经网络,使用了新型金字塔自相关注意机制。它可以从图表上的长时间序列中学习,并提高长期流量预测准确性。与几种最先进的方法相比,我们的模型可以实现高达35%的长期流量预测准确性。 X-GPA模型的基于注意力的分数提供了基于交通动态的空间和时间解释,这些解释会改变正常与高峰时段的流量以及工作日与周末流量的变化。
translated by 谷歌翻译
Reliable forecasting of traffic flow requires efficient modeling of traffic data. Different correlations and influences arise in a dynamic traffic network, making modeling a complicated task. Existing literature has proposed many different methods to capture the complex underlying spatial-temporal relations of traffic networks. However, methods still struggle to capture different local and global dependencies of long-range nature. Also, as more and more sophisticated methods are being proposed, models are increasingly becoming memory-heavy and, thus, unsuitable for low-powered devices. In this paper, we focus on solving these problems by proposing a novel deep learning framework - STLGRU. Specifically, our proposed STLGRU can effectively capture both local and global spatial-temporal relations of a traffic network using memory-augmented attention and gating mechanism. Instead of employing separate temporal and spatial components, we show that our memory module and gated unit can learn the spatial-temporal dependencies successfully, allowing for reduced memory usage with fewer parameters. We extensively experiment on several real-world traffic prediction datasets to show that our model performs better than existing methods while the memory footprint remains lower. Code is available at \url{https://github.com/Kishor-Bhaumik/STLGRU}.
translated by 谷歌翻译
Long-term traffic prediction is highly challenging due to the complexity of traffic systems and the constantly changing nature of many impacting factors. In this paper, we focus on the spatio-temporal factors, and propose a graph multi-attention network (GMAN) to predict traffic conditions for time steps ahead at different locations on a road network graph. GMAN adapts an encoder-decoder architecture, where both the encoder and the decoder consist of multiple spatio-temporal attention blocks to model the impact of the spatio-temporal factors on traffic conditions. The encoder encodes the input traffic features and the decoder predicts the output sequence. Between the encoder and the decoder, a transform attention layer is applied to convert the encoded traffic features to generate the sequence representations of future time steps as the input of the decoder. The transform attention mechanism models the direct relationships between historical and future time steps that helps to alleviate the error propagation problem among prediction time steps. Experimental results on two real-world traffic prediction tasks (i.e., traffic volume prediction and traffic speed prediction) demonstrate the superiority of GMAN. In particular, in the 1 hour ahead prediction, GMAN outperforms state-of-the-art methods by up to 4% improvement in MAE measure. The source code is available at https://github.com/zhengchuanpan/GMAN.
translated by 谷歌翻译
Traffic forecasting has attracted widespread attention recently. In reality, traffic data usually contains missing values due to sensor or communication errors. The Spatio-temporal feature in traffic data brings more challenges for processing such missing values, for which the classic techniques (e.g., data imputations) are limited: 1) in temporal axis, the values can be randomly or consecutively missing; 2) in spatial axis, the missing values can happen on one single sensor or on multiple sensors simultaneously. Recent models powered by Graph Neural Networks achieved satisfying performance on traffic forecasting tasks. However, few of them are applicable to such a complex missing-value context. To this end, we propose GCN-M, a Graph Convolutional Network model with the ability to handle the complex missing values in the Spatio-temporal context. Particularly, we jointly model the missing value processing and traffic forecasting tasks, considering both local Spatio-temporal features and global historical patterns in an attention-based memory network. We propose as well a dynamic graph learning module based on the learned local-global features. The experimental results on real-life datasets show the reliability of our proposed method.
translated by 谷歌翻译
近年来,图形神经网络(GNN)与复发性神经网络(RNN)的变体相结合,在时空预测任务中达到了最先进的性能。对于流量预测,GNN模型使用道路网络的图形结构来解释链接和节点之间的空间相关性。最近的解决方案要么基于复杂的图形操作或避免预定义的图。本文提出了一种新的序列结构,以使用具有稀疏体系结构的GNN-RNN细胞在多个抽象的抽象上提取时空相关性,以减少训练时间与更复杂的设计相比。通过多个编码器编码相同的输入序列,并随着编码层的增量增加,使网络能够通过多级抽象来学习一般和详细的信息。我们进一步介绍了来自加拿大蒙特利尔的街道细分市场流量数据的新基准数据集。与高速公路不同,城市路段是循环的,其特征是复杂的空间依赖性。与基线方法相比,一小时预测的实验结果和我们的MSLTD街道级段数据集对我们的模型提高了7%以上,同时将计算资源要求提高了一半以上竞争方法。
translated by 谷歌翻译
Outstanding achievements of graph neural networks for spatiotemporal time series analysis show that relational constraints introduce an effective inductive bias into neural forecasting architectures. Often, however, the relational information characterizing the underlying data-generating process is unavailable and the practitioner is left with the problem of inferring from data which relational graph to use in the subsequent processing stages. We propose novel, principled - yet practical - probabilistic score-based methods that learn the relational dependencies as distributions over graphs while maximizing end-to-end the performance at task. The proposed graph learning framework is based on consolidated variance reduction techniques for Monte Carlo score-based gradient estimation, is theoretically grounded, and, as we show, effective in practice. In this paper, we focus on the time series forecasting problem and show that, by tailoring the gradient estimators to the graph learning problem, we are able to achieve state-of-the-art performance while controlling the sparsity of the learned graph and the computational scalability. We empirically assess the effectiveness of the proposed method on synthetic and real-world benchmarks, showing that the proposed solution can be used as a stand-alone graph identification procedure as well as a graph learning component of an end-to-end forecasting architecture.
translated by 谷歌翻译
Traffic forecasting as a canonical task of multivariate time series forecasting has been a significant research topic in AI community. To address the spatio-temporal heterogeneity and non-stationarity implied in the traffic stream, in this study, we propose Spatio-Temporal Meta-Graph Learning as a novel Graph Structure Learning mechanism on spatio-temporal data. Specifically, we implement this idea into Meta-Graph Convolutional Recurrent Network (MegaCRN) by plugging the Meta-Graph Learner powered by a Meta-Node Bank into GCRN encoder-decoder. We conduct a comprehensive evaluation on two benchmark datasets (METR-LA and PEMS-BAY) and a new large-scale traffic speed dataset in which traffic incident information is contained. Our model outperformed the state-of-the-arts to a large degree on all three datasets (over 27% MAE and 34% RMSE). Besides, through a series of qualitative evaluations, we demonstrate that our model can explicitly disentangle the road links and time slots with different patterns and be robustly adaptive to any anomalous traffic situations. Codes and datasets are available at https://github.com/deepkashiwa20/MegaCRN.
translated by 谷歌翻译
我们根据功能性隐藏动态地理模型(F-HDGM)的惩罚最大似然估计器(PMLE)提出了一种新型的模型选择算法。这些模型采用经典的混合效应回归结构,该结构具有嵌入式时空动力学,以模拟在功能域中观察到的地理参考数据。因此,感兴趣的参数是该域之间的函数。该算法同时选择了相关的样条基函数和回归变量,这些函数和回归变量用于对响应变量与协变量之间的固定效应关系进行建模。这样,它会自动收缩到功能系数的零部分或无关回归器的全部效果。该算法基于迭代优化,并使用自适应的绝对收缩和选择器操作员(LASSO)惩罚函数,其中未含量的F-HDGM最大likikelihood估计器获得了其中的权重。最大化的计算负担大大减少了可能性的局部二次近似。通过蒙特卡洛模拟研究,我们分析了在不同情况下算法的性能,包括回归器之间的强相关性。我们表明,在我们考虑的所有情况下,受罚的估计器的表现都优于未确定的估计器。我们将该算法应用于一个真实案例研究,其中将意大利伦巴第地区的小时二氧化氮浓度记录记录为具有多种天气和土地覆盖协变量的功能过程。
translated by 谷歌翻译
我们都取决于流动性,车辆运输会影响我们大多数人的日常生活。因此,预测道路网络中流量状态的能力是一项重要的功能和具有挑战性的任务。流量数据通常是从部署在道路网络中的传感器获得的。关于时空图神经网络的最新建议通过将流量数据建模为扩散过程,在交通数据中建模复杂的时空相关性方面取得了巨大进展。但是,直观地,流量数据包含两种不同类型的隐藏时间序列信号,即扩散信号和固有信号。不幸的是,几乎所有以前的作品都将交通信号完全视为扩散的结果,同时忽略了固有的信号,这会对模型性能产生负面影响。为了提高建模性能,我们提出了一种新型的脱钩时空框架(DSTF),该框架以数据驱动的方式将扩散和固有的交通信息分开,其中包含独特的估计门和残差分解机制。分离的信号随后可以通过扩散和固有模块分别处理。此外,我们提出了DSTF的实例化,分离的动态时空图神经网络(D2STGNN),可捕获时空相关性,还具有动态图学习模块,该模块针对学习流量网络动态特征的学习。使用四个现实世界流量数据集进行的广泛实验表明,该框架能够推进最先进的框架。
translated by 谷歌翻译
Multivariate time series forecasting constitutes important functionality in cyber-physical systems, whose prediction accuracy can be improved significantly by capturing temporal and multivariate correlations among multiple time series. State-of-the-art deep learning methods fail to construct models for full time series because model complexity grows exponentially with time series length. Rather, these methods construct local temporal and multivariate correlations within subsequences, but fail to capture correlations among subsequences, which significantly affect their forecasting accuracy. To capture the temporal and multivariate correlations among subsequences, we design a pattern discovery model, that constructs correlations via diverse pattern functions. While the traditional pattern discovery method uses shared and fixed pattern functions that ignore the diversity across time series. We propose a novel pattern discovery method that can automatically capture diverse and complex time series patterns. We also propose a learnable correlation matrix, that enables the model to capture distinct correlations among multiple time series. Extensive experiments show that our model achieves state-of-the-art prediction accuracy.
translated by 谷歌翻译
由于道路上越来越多的车辆,城市的交通管理已成为一个主要问题。智能交通系统(其)可以帮助城市交通管理者通过提供准确的流量预测来解决问题。为此,它需要一种可靠的业务预测算法,其可以基于过去和当前的业务数据在多个时间步骤中提供准确的流量预测。近年来,已经提出了许多不同的交通预测方法,这些方法已经证明了它们在准确性方面的有效性。然而,这些方法中的大多数都认为仅包括空间信息或时间信息并忽略了其他的效果。在本文中,为了解决上述问题,使用空间和时间依赖性开发了基于深度学习的方法。要考虑时空依赖项,基于交通相似度和距离等属性选择特定即时的附近的道路传感器。使用潜在空间映射的概念交叉连接两个预训练的深度自动编码器,并且使用从所选附近传感器的流量数据培训所得模型作为输入。使用从洛杉矶和湾区的不同高速公路上安装的Loop Detector传感器收集的现实世界交通数据培训了所提出的深度学习方法。来自加利福尼亚州运输绩效测量系统(PEMS)的网络门户网站自由提供交通数据。通过将其与许多机/深度学习方法进行比较来验证所提出的方法的有效性。已经发现,所提出的方法即使对于比其他技术最小的误差,即使超过60分钟的前方预测也提供了准确的流量预测结果。
translated by 谷歌翻译
Spatio-temporal modeling as a canonical task of multivariate time series forecasting has been a significant research topic in AI community. To address the underlying heterogeneity and non-stationarity implied in the graph streams, in this study, we propose Spatio-Temporal Meta-Graph Learning as a novel Graph Structure Learning mechanism on spatio-temporal data. Specifically, we implement this idea into Meta-Graph Convolutional Recurrent Network (MegaCRN) by plugging the Meta-Graph Learner powered by a Meta-Node Bank into GCRN encoder-decoder. We conduct a comprehensive evaluation on two benchmark datasets (METR-LA and PEMS-BAY) and a large-scale spatio-temporal dataset that contains a variaty of non-stationary phenomena. Our model outperformed the state-of-the-arts to a large degree on all three datasets (over 27% MAE and 34% RMSE). Besides, through a series of qualitative evaluations, we demonstrate that our model can explicitly disentangle locations and time slots with different patterns and be robustly adaptive to different anomalous situations. Codes and datasets are available at https://github.com/deepkashiwa20/MegaCRN.
translated by 谷歌翻译
时空系统中有效,准确的事件预测对于最大程度地减少服务停机时间和优化性能至关重要。这项工作旨在利用历史数据来使用时空预测来预测和诊断事件。我们考虑道路交通系统的特定用例,事件采取异常事件的形式,例如事故或破碎的车辆。为了解决这个问题,我们开发了一种称为RADNET的神经模型,该模型预测系统参数,例如未来时间段的平均车辆速度。由于这种系统在很大程度上遵循每日或每周的周期性,因此我们将Radnet的预测与历史平均值进行比较与标记事件进行比较。与先前的工作不同,radnet在两个排列中渗透了空间和时间趋势,最后在预测之前结合了密集表示。这促进了知情推理和更准确的事件检测。具有两个公开可用和一个新的道路交通数据集的实验表明,与最先进的方法相比,所提出的模型的预测F1得分高达8%。
translated by 谷歌翻译