This work presents six structural quality metrics that can measure the quality of knowledge graphs and analyzes five cross-domain knowledge graphs on the web (Wikidata, DBpedia, YAGO, Google Knowledge Graph, Freebase) as well as 'Raftel', Naver's integrated knowledge graph. The 'Good Knowledge Graph' should define detailed classes and properties in its ontology so that knowledge in the real world can be expressed abundantly. Also, instances and RDF triples should use the classes and properties actively. Therefore, we tried to examine the internal quality of knowledge graphs numerically by focusing on the structure of the ontology, which is the schema of knowledge graphs, and the degree of use thereof. As a result of the analysis, it was possible to find the characteristics of a knowledge graph that could not be known only by scale-related indicators such as the number of classes and properties.
translated by 谷歌翻译
叙事制图是一项学科,研究了故事和地图的交织性质。然而,叙述的传统地理化技术经常遇到几个突出的挑战,包括数据采集和一体化挑战和语义挑战。为了解决这些挑战,在本文中,我们提出了具有知识图表(KGS)的叙事制图的想法。首先,要解决数据采集和集成挑战,我们开发了一组基于KG的地理学工具箱,以允许用户从GISYstem内搜索和检索来自集成跨域知识图中的相关数据以获得来自GISYSTEM的叙述映射。在此工具的帮助下,来自KG的检索数据以GIS格式直接实现,该格式已准备好用于空间分析和映射。两种用例 - 麦哲伦的远征和第二次世界大战 - 被提出展示了这种方法的有效性。与此同时,从这种方法中确定了几个限制,例如数据不完整,语义不相容,以及地理化的语义挑战。对于后面的两个限制,我们为叙事制图提出了一个模块化本体,它将地图内容(地图内容模块)和地理化过程(制图模块)正式化。我们证明,通过代表KGS(本体)中的地图内容和地理化过程,我们可以实现数据可重用性和叙事制图的地图再现性。
translated by 谷歌翻译
外部知识(A.K.A.侧面信息)在零拍摄学习(ZSL)中起着关键作用,该角色旨在预测从未出现在训练数据中的看不见的类。已被广泛调查了几种外部知识,例如文本和属性,但他们独自受到不完整的语义。因此,一些最近的研究提出了由于其高度富有效力和代表知识的兼容性而使用知识图表(千克)。但是,ZSL社区仍然缺乏用于学习和比较不同外部知识设置和基于不同的KG的ZSL方法的标准基准。在本文中,我们提出了六个资源,涵盖了三个任务,即零拍摄图像分类(ZS-IMGC),零拍摄关系提取(ZS-RE)和零拍KG完成(ZS-KGC)。每个资源都有一个正常的zsl基准标记和包含从文本到属性的kg的kg,从关系知识到逻辑表达式。我们已清楚地介绍了这些资源,包括其建设,统计数据格式和使用情况W.r.t.不同的ZSL方法。更重要的是,我们进行了一项全面的基准研究,具有两个通用和最先进的方法,两种特定方法和一种可解释方法。我们讨论并比较了不同的ZSL范式W.R.T.不同的外部知识设置,并发现我们的资源具有开发更高级ZSL方法的巨大潜力,并为应用KGS进行增强机学习的更多解决方案。所有资源都可以在https://github.com/china-uk-zsl/resources_for_kzsl上获得。
translated by 谷歌翻译
Wikidata是一个经常更新,社区驱动和多语言知识图形。因此,Wikidata是实体联系的一个有吸引力的基础,这是最近发表论文的增加显而易见的。该调查侧重于四个主题:(1)存在哪些Wikidata实体链接数据集,它们是多么广泛使用,它们是如何构建的? (2)对实体联系数据集的设计进行Wikidata的特点,如果是的话,怎么样? (3)当前实体链接方法如何利用Wikidata的特定特征? (4)现有实体链接方法未开发哪种Wikidata特征?本次调查显示,当前的Wikidata特定实体链接数据集在其他知识图表中的方案中的注释方案中没有不同。因此,没有提升多语言和时间依赖数据集的可能性,是自然适合维基帽的数据集。此外,我们表明大多数实体链接方法使用Wikidata以与任何其他知识图相同的方式,因为任何其他知识图都缺少了利用Wikidata特定特征来提高质量的机会。几乎所有方法都使用标签等特定属性,有时是描述,而是忽略超关系结构等特征。因此,例如,通过包括超关系图嵌入或类型信息,仍有改进的余地。许多方法还包括来自维基百科的信息,这些信息很容易与Wikidata组合并提供有价值的文本信息,Wikidata缺乏。
translated by 谷歌翻译
各种网络的部署(例如,事物互联网(IOT)和移动网络),数据库(例如,营养表和食品组成数据库)和社交媒体(例如,Instagram和Twitter)产生大量的多型食品数据,这在食品科学和工业中起着关键作用。然而,由于众所周知的数据协调问题,这些多源食品数据显示为信息孤岛,导致难以充分利用这些食物数据。食物知识图表提供了统一和标准化的概念术语及其结构形式的关系,因此可以将食物信息孤单转换为更可重复使用的全球数量数字连接的食物互联网以使各种应用有益。据我们所知,这是食品科学与工业中食品知识图表的第一个全面审查。我们首先提供知识图表的简要介绍,然后主要从食物分类,食品本体到食品知识图表的进展。粮食知识图表的代表性应用将在新的配方开发,食品可追溯性,食物数据可视化,个性化饮食推荐,食品搜索和质询回答,视觉食品对象识别,食品机械智能制造方面来概述。我们还讨论了该领域的未来方向,例如食品供应链系统和人类健康的食品知识图,这应该得到进一步的研究。他们的巨大潜力将吸引更多的研究努力,将食物知识图形应用于食品科学和工业领域。
translated by 谷歌翻译
知识图是一个必不可少的和趋势技术,具有在实体识别,搜索或问题应答中的优势。在执行命名实体识别任务的自然语言处理中有一种方法;但是,有很少的方法可以为特定于域的文本提供三元组。在本文中,已经努力开发一个可以将文本从给定教科书转换为可以用于可视化的三元组的系统,以便为知识图形和用于进一步应用程序的系统。初步评估和评估给出了有希望的结果,F1得分为82%。
translated by 谷歌翻译
安全分析师在调查攻击,新兴的网络威胁或最近发现的漏洞后准备威胁分析。关于恶意软件攻击和广告系列的威胁情报在博客文章,报告,分析和推文上分享,并具有不同的技术细节。其他安全分析师使用这种情报来告知他们新兴威胁,妥协指标,攻击方法和预防措施。它统称为威胁智能,通常是一种非结构化格式,因此,无缝集成到现有的IDPS系统中,具有挑战性。在本文中,我们提出了一个汇总并结合CTI的框架 - 公开可用的网络威胁智能信息。使用知识图以结构化的格式提取并存储该信息,以便可以与其他安全分析师进行大规模保留威胁智能的语义。我们建议第一个半监督的开源知识图(KG)框架Tinker捕获网络威胁信息及其上下文。在修补匠之后,我们生成一个网络智能知识图(CTI-KG)。我们使用不同的用例及其应用于安全分析师的应用来证明CTI-KG的功效。
translated by 谷歌翻译
我们根据生态毒理学风险评估中使用的主要数据来源创建了知识图表。我们已经将这种知识图表应用于风险评估中的重要任务,即化学效果预测。我们已经评估了在该预测任务的各种几何,分解和卷积模型中嵌入模型的九个知识图形嵌入模型。我们表明,使用知识图形嵌入可以提高与神经网络的效果预测的准确性。此外,我们已经实现了一种微调架构,它将知识图形嵌入到效果预测任务中,并导致更好的性能。最后,我们评估知识图形嵌入模型的某些特征,以阐明各个模型性能。
translated by 谷歌翻译
Wikidata越来越多地通过许多社区进行各种各样的应用,这需要高质量的知识来提供成功的结果。在本文中,我们制定了一个框架,以通过在社区行使的当前实践中脱灯来检测和分析Wikidata中的低质量陈述。我们探讨Wikidata的三个数据质量指标,基于:1)对目前录制知识的社区共识,假设已被删除并未添加的陈述被隐含地同意低质量;2)已弃用的陈述;3)数据中的约束违规。我们将这些指标结合起来检测低质量陈述,揭示了重复实体,缺少三元,违反类型规则和分类学区分的挑战。我们的研究结果补充了Wikidata社区的持续努力,以提高数据质量,旨在使用户和编辑更容易找到和纠正错误。
translated by 谷歌翻译
在这项工作中,我们在文化象征主义的背景下填补了语义网络中的差距。建立早期的工作,我们介绍了模拟本体,这是一种模拟象征意义的背景知识,通过组合从Simulacra的权威理论和Jean Baudrillard的象征性和符号中所采取的符号结构和内容的象征性理论和象征性的象征性和内容来制定象征意义的背景知识。史蒂文古老的旧版典型的字典。我们通过将其转换为在我们的本体模式中来重新设计已经存在于异质资源中以产生溢流的象征性,这是完全致力于文化象征主义的第一个知识图。提出了在知识图上运行的第一个实验,以显示对象征主义定量研究的潜力。
translated by 谷歌翻译
科学家在寻找最佳的输入资源来解决目标预测任务的最佳输入资源方面的困难是在知识图图图上训练算法的主要障碍之一。除此之外,一个关键的挑战是确定如何操纵(和嵌入)这些数据,这些数据通常以特定的三元组(即主题,谓词,对象)的形式来启用学习过程。在本文中,我们描述了Liveschema倡议,即一个门户,该网关提供了一个服务家庭,可以轻松访问,分析,转换和利用知识图模式,其主要目标是促进这些资源在机器学习用例中的重复使用。作为该计划的早期实施,我们还推进了一个在线目录,该目录依赖于800多个资源,并提供了第一组示例服务。
translated by 谷歌翻译
庞大的科学出版物呈现出越来越大的挑战,找到与给定的研究问题相关的那些,并在其基础上做出明智的决定。如果不使用自动化工具,这变得非常困难。在这里,一个可能的改进区域是根据其主题自动分类出版物摘要。这项工作介绍了一种新颖的知识基础的出色出版物分类器。该方法侧重于实现可扩展性和对其他域的容易适应性。在非常苛刻的食品安全领域,分类速度和准确度被证明是令人满意的。需要进一步发展和评估该方法,因为所提出的方法显示出很大的潜力。
translated by 谷歌翻译
Practices in the built environment have become more digitalized with the rapid development of modern design and construction technologies. However, the requirement of practitioners or scholars to gather complicated professional knowledge in the built environment has not been satisfied yet. In this paper, more than 80,000 paper abstracts in the built environment field were obtained to build a knowledge graph, a knowledge base storing entities and their connective relations in a graph-structured data model. To ensure the retrieval accuracy of the entities and relations in the knowledge graph, two well-annotated datasets have been created, containing 2,000 instances and 1,450 instances each in 29 relations for the named entity recognition task and relation extraction task respectively. These two tasks were solved by two BERT-based models trained on the proposed dataset. Both models attained an accuracy above 85% on these two tasks. More than 200,000 high-quality relations and entities were obtained using these models to extract all abstract data. Finally, this knowledge graph is presented as a self-developed visualization system to reveal relations between various entities in the domain. Both the source code and the annotated dataset can be found here: https://github.com/HKUST-KnowComp/BEKG.
translated by 谷歌翻译
在商业航空域中,有大量文件,例如事故报告(NTSB,ASRS)和监管指令(ADS)。有必要有效地访问这些多样化的存储库,以便在航空业中的服务需求,例如维护,合规性和安全性。在本文中,我们提出了一个基于深度学习的知识图(kg)基于深度学习(DL)的问题答案(QA)航空安全系统。我们从飞机事故报告中构建了知识图,并向研究人员社区贡献了这一资源。该资源的功效由上述质量保证系统测试和证明。根据上述文档构建的自然语言查询将转换为SPARQL(RDF图数据库的接口语言)查询并回答。在DL方面,我们有两个不同的质量检查模型:(i)BERT QA,它是通道检索(基于句子的)和问题答案(基于BERT)的管道,以及(ii)最近发布的GPT-3。我们根据事故报告创建的一系列查询评估系统。我们组合的QA系统在GPT-3上的准确性增长了9.3%,比Bert QA增加了40.3%。因此,我们推断出KG-DL的性能比单一表现更好。
translated by 谷歌翻译
机器学习方法尤其是深度神经网络取得了巨大的成功,但其中许多往往依赖于一些标记的样品进行训练。在真实世界的应用中,我们经常需要通过例如具有新兴预测目标和昂贵的样本注释的动态上下文来解决样本短缺。因此,低资源学习,旨在学习具有足够资源(特别是培训样本)的强大预测模型,现在正在被广泛调查。在所有低资源学习研究中,许多人更喜欢以知识图(kg)的形式利用一些辅助信息,这对于知识表示变得越来越受欢迎,以减少对标记样本的依赖。在这项调查中,我们非常全面地审查了90美元的报纸关于两个主要的低资源学习设置 - 零射击学习(ZSL)的预测,从未出现过训练,而且很少拍摄的学习(FSL)预测的新类仅具有可用的少量标记样本。我们首先介绍了ZSL和FSL研究中使用的KGS以及现有的和潜在的KG施工解决方案,然后系统地分类和总结了KG感知ZSL和FSL方法,将它们划分为不同的范例,例如基于映射的映射,数据增强,基于传播和基于优化的。我们接下来呈现了不同的应用程序,包括计算机视觉和自然语言处理中的kg增强预测任务,还包括kg完成的任务,以及每个任务的一些典型评估资源。我们最终讨论了一些关于新学习和推理范式的方面的一些挑战和未来方向,以及高质量的KGs的建设。
translated by 谷歌翻译
尽管编码了大量丰富和有价值的数据,但现有的数据来源主要是独立创建的,这是他们整合的重大挑战。映射语言,例如RML和R2RML,促进了将Meta-Data和将数据集成到知识图中的过程的声明性规范。除了在数据源和统一模式中表达对应关系之外,映射规则还可以包括知识提取功能。组合映射规则和函数表示强大的形式主义,以指定流水管以透明地将数据集成到知识图中。令人惊讶的是,这些形式主义没有完全调整,并且通过将ad-hoc程序执行到预处理和集成数据来创建许多知识图表。在本文中,我们提出了Eablock,一种方法将实体对齐(EA)集成为RML映射规则的一部分。 eAblock包括执行从文本属性的实体识别的功能块,并将识别的实体链接到Wikidata,DBPedia和域特定词库中的相应资源,例如UML。 EABLOCK提供可靠性和有效的技术来评估功能并转移映射以促进其在任何符合RML标准的发动机中的应用。我们有经验评估的eAblock性能,结果表明eAblock加快了需要实体识别和链接在符合最先进的RML标准的发动机的知识图形创建管道。 Eablock还通过Github存储库(https:/github.com/sdm-tib/eablock)和doi(https://doi.org/10.5281/zenodo.5779777)作为工具被公开可用作工具。
translated by 谷歌翻译
Relational machine learning studies methods for the statistical analysis of relational, or graph-structured, data. In this paper, we provide a review of how such statistical models can be "trained" on large knowledge graphs, and then used to predict new facts about the world (which is equivalent to predicting new edges in the graph). In particular, we discuss two fundamentally different kinds of statistical relational models, both of which can scale to massive datasets. The first is based on latent feature models such as tensor factorization and multiway neural networks. The second is based on mining observable patterns in the graph. We also show how to combine these latent and observable models to get improved modeling power at decreased computational cost. Finally, we discuss how such statistical models of graphs can be combined with text-based information extraction methods for automatically constructing knowledge graphs from the Web. To this end, we also discuss Google's Knowledge Vault project as an example of such combination.
translated by 谷歌翻译
自动化本体策划是知识工程中的至关重要的任务。通过机器学习技术(例如语义嵌入)的预测是一个有希望的方向,但相关研究仍然是初步的。在本文中,我们提出了一个名为Bertsubs的类集合预测方法,该方法使用预训练的语言模型BERT来计算类标签和自定义输入模板的上下文嵌入,以结合周围类的上下文。对两个大型现实世界的评估表明,其性能比最先进的表现更好。
translated by 谷歌翻译
全球DataSphere快速增加,预计将达到20251年的175个Zettabytes。但是,大多数内容都是非结构化的,并且无法通过机器可以理解。将此数据构建到知识图中,使得智能应用程序具有诸如深度问题的智能应用,推荐系统,语义搜索等。知识图是一种新兴技术,允许使用内容与上下文一起逻辑推理和揭示新的洞察。因此,它提供了必要的语法和推理语义,使得能够解决复杂的医疗保健,安全,金融机构,经济学和业务问题。作为一项结果,企业正在努力建设和维护知识图表,以支持各种下游应用。手动方法太贵了。自动化方案可以降低建设知识图的成本,高达15-250次。本文批评了最先进的自动化技术,以自主地生成近乎人类的近乎人类的质量。此外,它突出了需要解决的不同研究问题,以提供高质量的知识图表
translated by 谷歌翻译
知识图(kg)及其本体论的变体已被广泛用于知识表示,并且已证明在增强零拍学习(ZSL)方面非常有效。但是,利用KGS的现有ZSL方法都忽略了KGS中代表的类间关系的内在复杂性。一个典型的功能是,一类通常与不同语义方面的其他类别有关。在本文中,我们专注于增强ZSL的本体,并建议学习以本体论属性为指导的解剖本体嵌入,以捕获和利用不同方面的更细粒度的类关系。我们还贡献了一个名为dozsl的新ZSL框架,该框架包含两个新的ZSL解决方案,分别基于生成模型和图形传播模型有效地利用了分解的本体学嵌入。已经对零摄像图分类(ZS-IMGC)和零射Hot KG完成(ZS-KGC)进行了五个基准测试进行了广泛的评估。 Dozsl通常比最先进的表现更好,并且通过消融研究和案例研究证实了其组成部分。我们的代码和数据集可在https://github.com/zjukg/dozsl上找到。
translated by 谷歌翻译