深度神经网络(DNN)在非参考图像质量评估(NR-IQA)方面具有巨大潜力。但是,NR-IQA的注释是劳动密集型且耗时的,这严重限制了其对真实图像的应用。为了减轻对质量注释的依赖,一些作品已将无监督的域适应性(UDA)应用于NR-IQA。但是,上述方法忽略了分类中使用的对齐空间是最佳选择,因为该空间不是为了感知而精心设计的。为了解决这一挑战,我们提出了一个有效的面向感知的无监督域适应方法,用于NR-IQA,该方法通过富含标签的源域数据将足够的知识转移到通过样式的对齐和混合的标签目标域图像。具体而言,我们发现了一个更紧凑,更可靠的空间,即基于有趣/惊人的观察结果,以感知为导向的UDA的特征样式空间,即DNN中深层的功能样式(即平均和差异)与DNN中的深层层完全相关NR-IQA的质量得分。因此,我们建议在更面向感知的空间(即特征样式空间)中对齐源和目标域,以减少其他质量 - Irretrelevant特征因素的干预措施。此外,为了提高质量得分与其功能样式之间的一致性,我们还提出了一种新颖的功能增强策略样式混音,将DNN的最后一层之前将功能样式(即平均值和差异)混合在一起,并混合使用标签。对两个典型的跨域设置(即合成至真实性和多种变形)的广泛实验结果证明了我们提出的styleam对NR-IQA的有效性。
translated by 谷歌翻译
现有的基于学习的盲图质量评估方法(BIQA)在很大程度上取决于大量注释的培训数据,并且在遇到域/分配转移问题时通常会遭受严重的性能降解。得益于无监督的域适应性(UDA)的开发,一些工作试图将知识从带有标签的源域转移到使用UDA域移动下的无标签目标域。但是,它需要源和目标数据共存,由于隐私或存储问题,这对于源数据可能是不切实际的。在本文中,我们以简单而有效的方式迈出了无源无监督的域适应(SFUDA),以使BIQA无需访问源数据即可解决域移动。具体而言,我们将质量评估任务作为评级分配预测问题。基于BIQA的内在特性,我们提出了一组精心设计的自我监督目标,以指导BN仿射参数对目标域的适应。其中,最大程度地减少了预测熵并最大化批次预测多样性的目的是鼓励更自信的结果,同时避免琐碎的解决方案。此外,基于这样的观察,即单个图像的IQA评级分布遵循高斯分布,我们将高斯正则化应用于预测的评级分布,以使其与人类评分的性质更加一致。在跨域情景下的广泛实验结果证明了我们提出的减轻域移位方法的有效性。
translated by 谷歌翻译
基于无监督的域适应性(UDA),由于目标情景的表现有希望的表现,面部抗散热器(FAS)方法引起了人们的注意。大多数现有的UDA FAS方法通常通过对齐语义高级功能的分布来拟合受过训练的模型。但是,对未标记的目标域的监督不足,低水平特征对齐降低了现有方法的性能。为了解决这些问题,我们提出了UDA FAS的新颖观点,该视角将目标数据直接适合于模型,即,通过图像翻译将目标数据风格化为源域样式,并进一步将风格化的数据提供给训练有素的数据分类的源模型。提出的生成域适应(GDA)框架结合了两个精心设计的一致性约束:1)域间神经统计量的一致性指导发生器缩小域间间隙。 2)双层语义一致性确保了风格化图像的语义质量。此外,我们提出了域内频谱混合物,以进一步扩大目标数据分布,以确保概括并减少域内间隙。广泛的实验和可视化证明了我们方法对最新方法的有效性。
translated by 谷歌翻译
无监督的域适应性(UDA)引起了相当大的关注,这将知识从富含标签的源域转移到相关但未标记的目标域。减少域间差异一直是提高UDA性能的关键因素,尤其是对于源域和目标域之间存在较大差距的任务。为此,我们提出了一种新颖的风格感知功能融合方法(SAFF),以弥合大域间隙和转移知识,同时减轻阶级歧视性信息的丧失。受到人类传递推理和学习能力的启发,研究了一种新颖的风格感知的自我互化领域(SSID),通过一系列中级辅助综合概念将两个看似无关的概念联系起来。具体而言,我们提出了一种新颖的SSID学习策略,该策略从源和目标域中选择样本作为锚点,然后随机融合这些锚的对象和样式特征,以生成具有标记和样式丰富的中级辅助功能以进行知识转移。此外,我们设计了一个外部存储库来存储和更新指定的标记功能,以获得稳定的类功能和班级样式功能。基于提议的内存库,内部和域间损耗功能旨在提高类识别能力和特征兼容性。同时,我们通过无限抽样模拟SSID的丰富潜在特征空间,并通过数学理论模拟损失函数的收敛性。最后,我们对常用的域自适应基准测试进行了全面的实验,以评估所提出的SAFF,并且实验结果表明,所提出的SAFF可以轻松地与不同的骨干网络结合在一起,并获得更好的性能作为插入插型模块。
translated by 谷歌翻译
我们提出了一种小说的无参考质量评估度量,图像转移点云质量评估(IT-PCQA),用于3D点云。对于质量评估,深度神经网络(DNN)在无参考度量设计上显示了令人信服的性能。但是,无引用PCQA最具挑战性的问题是我们缺乏大规模的主观数据库来驱动强大的网络。我们的动机是人类视觉系统(HVS)是决策者,无论质量评估的媒体类型如何。利用自然图像的丰富主观评分,我们可以通过DNN探讨人类感知的评估标准,并将预测的能力转移到3D点云。特别是,我们将自然图像视为源域和点云作为目标域,并通过无监督的对抗域适应推断云质量。为了提取有效的潜在特征并最小化域差异,我们提出了分层特征编码器和条件鉴别网络。考虑到最终目的是回归客观评分,我们在条件鉴别网络中引入了一种新的条件跨熵损失,以惩罚阻碍质量回归网络的收敛的负样本。实验结果表明,该方法可以实现比传统的无参考度量更高的性能,甚至与全引用度量的相当结果。该方法还表明,在没有昂贵和繁琐的主观评估的情况下评估特定媒体内容质量的可行性。
translated by 谷歌翻译
半监督域适应(SSDA)是一种具有挑战性的问题,需要克服1)以朝向域的较差的数据和2)分布换档的方法。不幸的是,由于培训数据偏差朝标标样本训练,域适应(DA)和半监督学习(SSL)方法的简单组合通常无法解决这两个目的。在本文中,我们介绍了一种自适应结构学习方法,以规范SSL和DA的合作。灵感来自多视图学习,我们建议的框架由共享特征编码器网络和两个分类器网络组成,用于涉及矛盾的目的。其中,其中一个分类器被应用于组目标特征以提高级别的密度,扩大了鲁棒代表学习的分类集群的间隙。同时,其他分类器作为符号器,试图散射源功能以增强决策边界的平滑度。目标聚类和源扩展的迭代使目标特征成为相应源点的扩张边界内的封闭良好。对于跨域特征对齐和部分标记的数据学习的联合地址,我们应用最大平均差异(MMD)距离最小化和自培训(ST)将矛盾结构投影成共享视图以进行可靠的最终决定。对标准SSDA基准的实验结果包括Domainnet和Office-Home,展示了我们对最先进的方法的方法的准确性和稳健性。
translated by 谷歌翻译
Vision transformer has demonstrated great potential in abundant vision tasks. However, it also inevitably suffers from poor generalization capability when the distribution shift occurs in testing (i.e., out-of-distribution data). To mitigate this issue, we propose a novel method, Semantic-aware Message Broadcasting (SAMB), which enables more informative and flexible feature alignment for unsupervised domain adaptation (UDA). Particularly, we study the attention module in the vision transformer and notice that the alignment space using one global class token lacks enough flexibility, where it interacts information with all image tokens in the same manner but ignores the rich semantics of different regions. In this paper, we aim to improve the richness of the alignment features by enabling semantic-aware adaptive message broadcasting. Particularly, we introduce a group of learned group tokens as nodes to aggregate the global information from all image tokens, but encourage different group tokens to adaptively focus on the message broadcasting to different semantic regions. In this way, our message broadcasting encourages the group tokens to learn more informative and diverse information for effective domain alignment. Moreover, we systematically study the effects of adversarial-based feature alignment (ADA) and pseudo-label based self-training (PST) on UDA. We find that one simple two-stage training strategy with the cooperation of ADA and PST can further improve the adaptation capability of the vision transformer. Extensive experiments on DomainNet, OfficeHome, and VisDA-2017 demonstrate the effectiveness of our methods for UDA.
translated by 谷歌翻译
Recent works on domain adaptation reveal the effectiveness of adversarial learning on filling the discrepancy between source and target domains. However, two common limitations exist in current adversarial-learning-based methods. First, samples from two domains alone are not sufficient to ensure domain-invariance at most part of latent space. Second, the domain discriminator involved in these methods can only judge real or fake with the guidance of hard label, while it is more reasonable to use soft scores to evaluate the generated images or features, i.e., to fully utilize the inter-domain information. In this paper, we present adversarial domain adaptation with domain mixup (DM-ADA), which guarantees domain-invariance in a more continuous latent space and guides the domain discriminator in judging samples' difference relative to source and target domains. Domain mixup is jointly conducted on pixel and feature level to improve the robustness of models. Extensive experiments prove that the proposed approach can achieve superior performance on tasks with various degrees of domain shift and data complexity.
translated by 谷歌翻译
虽然在许多域内生成并提供了大量的未标记数据,但对视觉数据的自动理解的需求高于以往任何时候。大多数现有机器学习模型通常依赖于大量标记的训练数据来实现高性能。不幸的是,在现实世界的应用中,不能满足这种要求。标签的数量有限,手动注释数据昂贵且耗时。通常需要将知识从现有标记域传输到新域。但是,模型性能因域之间的差异(域移位或数据集偏差)而劣化。为了克服注释的负担,域适应(DA)旨在在将知识从一个域转移到另一个类似但不同的域中时减轻域移位问题。无监督的DA(UDA)处理标记的源域和未标记的目标域。 UDA的主要目标是减少标记的源数据和未标记的目标数据之间的域差异,并在培训期间在两个域中学习域不变的表示。在本文中,我们首先定义UDA问题。其次,我们从传统方法和基于深度学习的方法中概述了不同类别的UDA的最先进的方法。最后,我们收集常用的基准数据集和UDA最先进方法的报告结果对视觉识别问题。
translated by 谷歌翻译
无监督域适应(UDA)已成功解决了可视应用程序的域移位问题。然而,由于以下原因,这些方法可能对时间序列数据的性能有限。首先,它们主要依赖于用于源预制的大规模数据集(即,ImageNet),这不适用于时间序列数据。其次,它们在域对齐步骤期间忽略源极限和目标域的特征空间上的时间维度。最后,最先前的UDA方法中的大多数只能对齐全局特征而不考虑目标域的细粒度分布。为了解决这些限制,我们提出了一个自我监督的自回归域适应(Slarda)框架。特别是,我们首先设计一个自我监督的学习模块,它利用预测作为辅助任务以提高源特征的可转换性。其次,我们提出了一种新的自回归域自适应技术,其包括在域对齐期间源和目标特征的时间依赖性。最后,我们开发了一个集合教师模型,通过自信的伪标记方法对准目标域中的类明智分发。已经在三个现实世界时间序列应用中进行了广泛的实验,具有30个跨域方案。结果表明,我们所提出的杆状方法明显优于时序序列域适应的最先进的方法。
translated by 谷歌翻译
语义细分是一种关键技术,涉及高分辨率遥感(HRS)图像的自动解释,并引起了遥感社区的广泛关注。由于其层次表示能力,深度卷积神经网络(DCNN)已成功应用于HRS图像语义分割任务。但是,对大量培训数据的严重依赖性以及对数据分布变化的敏感性严重限制了DCNNS在HRS图像的语义分割中的潜在应用。这项研究提出了一种新型的无监督域适应性语义分割网络(MemoryAdaptnet),用于HRS图像的语义分割。 MemoryAdaptnet构建了一种输出空间对抗学习方案,以弥合源域和目标域之间的域分布差异,并缩小域移位的影响。具体而言,我们嵌入了一个不变的特征内存模块来存储不变的域级上下文信息,因为从对抗学习获得的功能仅代表当前有限输入的变体特征。该模块由类别注意力驱动的不变域级上下文集合模块集成到当前伪不变功能,以进一步增强像素表示。基于熵的伪标签滤波策略用于更新当前目标图像的高额伪不变功能的内存模块。在三个跨域任务下进行的广泛实验表明,我们提出的记忆ADAPTNET非常优于最新方法。
translated by 谷歌翻译
现有的基于深度学习的变更检测方法试图精心设计具有功能强大特征表示的复杂神经网络,但忽略了随时间变化的土地覆盖变化引起的通用域转移,包括亮度波动和事件前和事后图像之间的季节变化,从而产生亚最佳结果。在本文中,我们提出了一个端到端监督域的适应框架,用于跨域变更检测,即SDACD,以有效地减轻双期颞图像之间的域移位,以更好地变更预测。具体而言,我们的SDACD通过有监督的学习从图像和特征角度介绍了合作改编。图像适应性利用了具有循环矛盾的限制来利用生成的对抗学习,以执行跨域样式转换,从而有效地以两边的方式缩小了域间隙。为了特征适应性,我们提取域不变特征以对齐特征空间中的不同特征分布,这可以进一步减少跨域图像的域间隙。为了进一步提高性能,我们结合了三种类型的双颞图像,以进行最终变化预测,包括初始输入双期图像和两个来自事件前和事后域的生成的双颞图像。对两个基准的广泛实验和分析证明了我们提出的框架的有效性和普遍性。值得注意的是,我们的框架将几个代表性的基线模型推向了新的最先进的记录,分别在CDD和WHU建筑数据集上分别达到97.34%和92.36%。源代码和模型可在https://github.com/perfect-you/sdacd上公开获得。
translated by 谷歌翻译
睡眠分期在诊断和治疗睡眠障碍中非常重要。最近,已经提出了许多数据驱动的深度学习模型,用于自动睡眠分期。他们主要在一个大型公共标签的睡眠数据集上训练该模型,并在较小的主题上对其进行测试。但是,他们通常认为火车和测试数据是从相同的分布中绘制的,这可能在现实世界中不存在。最近已经开发了无监督的域适应性(UDA)来处理此域移位问题。但是,以前用于睡眠分期的UDA方法具有两个主要局限性。首先,他们依靠一个完全共享的模型来对齐,该模型可能会在功能提取过程中丢失特定于域的信息。其次,它们仅在全球范围内将源和目标分布对齐,而无需考虑目标域中的类信息,从而阻碍了测试时模型的分类性能。在这项工作中,我们提出了一个名为Adast的新型对抗性学习框架,以解决未标记的目标域中的域转移问题。首先,我们开发了一个未共享的注意机制,以保留两个领域中的域特异性特征。其次,我们设计了一种迭代自我训练策略,以通过目标域伪标签提高目标域上的分类性能。我们还建议双重分类器,以提高伪标签的鲁棒性和质量。在六个跨域场景上的实验结果验证了我们提出的框架的功效及其优于最先进的UDA方法。源代码可在https://github.com/emadeldeen24/adast上获得。
translated by 谷歌翻译
Unsupervised domain adaptation (UDA) via deep learning has attracted appealing attention for tackling domain-shift problems caused by distribution discrepancy across different domains. Existing UDA approaches highly depend on the accessibility of source domain data, which is usually limited in practical scenarios due to privacy protection, data storage and transmission cost, and computation burden. To tackle this issue, many source-free unsupervised domain adaptation (SFUDA) methods have been proposed recently, which perform knowledge transfer from a pre-trained source model to unlabeled target domain with source data inaccessible. A comprehensive review of these works on SFUDA is of great significance. In this paper, we provide a timely and systematic literature review of existing SFUDA approaches from a technical perspective. Specifically, we categorize current SFUDA studies into two groups, i.e., white-box SFUDA and black-box SFUDA, and further divide them into finer subcategories based on different learning strategies they use. We also investigate the challenges of methods in each subcategory, discuss the advantages/disadvantages of white-box and black-box SFUDA methods, conclude the commonly used benchmark datasets, and summarize the popular techniques for improved generalizability of models learned without using source data. We finally discuss several promising future directions in this field.
translated by 谷歌翻译
在本文中,我们提出了一种使用域鉴别特征模块的双模块网络架构,以鼓励域不变的特征模块学习更多域不变的功能。该建议的架构可以应用于任何利用域不变功能的任何模型,用于无监督域适应,以提高其提取域不变特征的能力。我们在作为代表性算法的神经网络(DANN)模型的区域 - 对抗训练进行实验。在培训过程中,我们为两个模块提供相同的输入,然后分别提取它们的特征分布和预测结果。我们提出了差异损失,以找到预测结果的差异和两个模块之间的特征分布。通过对抗训练来最大化其特征分布和最小化其预测结果的差异,鼓励两个模块分别学习更多域歧视和域不变特征。进行了广泛的比较评估,拟议的方法在大多数无监督的域适应任务中表现出最先进的。
translated by 谷歌翻译
最近,由于受监督人员重新识别(REID)的表现不佳,域名概括(DG)人REID引起了很多关注,旨在学习一个不敏感的模型,并可以抵抗域的影响偏见。在本文中,我们首先通过实验验证样式因素是域偏差的重要组成部分。基于这个结论,我们提出了一种样式变量且无关紧要的学习方法(SVIL)方法,以消除样式因素对模型的影响。具体来说,我们在SVIL中设计了样式的抖动模块(SJM)。 SJM模块可以丰富特定源域的样式多样性,并减少各种源域的样式差异。这导致该模型重点关注与身份相关的信息,并对样式变化不敏感。此外,我们将SJM模块与元学习算法有机结合,从而最大程度地提高了好处并进一步提高模型的概括能力。请注意,我们的SJM模块是插件和推理,无需成本。广泛的实验证实了我们的SVIL的有效性,而我们的方法的表现优于DG-REID基准测试的最先进方法。
translated by 谷歌翻译
最近的智能故障诊断(IFD)的进展大大依赖于深度代表学习和大量标记数据。然而,机器通常以各种工作条件操作,或者目标任务具有不同的分布,其中包含用于训练的收集数据(域移位问题)。此外,目标域中的新收集的测试数据通常是未标记的,导致基于无监督的深度转移学习(基于UDTL为基础的)IFD问题。虽然它已经实现了巨大的发展,但标准和开放的源代码框架以及基于UDTL的IFD的比较研究尚未建立。在本文中,我们根据不同的任务,构建新的分类系统并对基于UDTL的IFD进行全面审查。对一些典型方法和数据集的比较分析显示了基于UDTL的IFD中的一些开放和基本问题,这很少研究,包括特征,骨干,负转移,物理前导等的可转移性,强调UDTL的重要性和再现性 - 基于IFD,整个测试框架将发布给研究界以促进未来的研究。总之,发布的框架和比较研究可以作为扩展界面和基本结果,以便对基于UDTL的IFD进行新的研究。代码框架可用于\ url {https:/github.com/zhaozhibin/udtl}。
translated by 谷歌翻译
Unsupervised Domain Adaptation (UDA) has emerged as a powerful solution for the domain shift problem via transferring the knowledge from a labeled source domain to a shifted unlabeled target domain. Despite the prevalence of UDA for visual applications, it remains relatively less explored for time-series applications. In this work, we propose a novel lightweight contrastive domain adaptation framework called CoTMix for time-series data. Unlike existing approaches that either use statistical distances or adversarial techniques, we leverage contrastive learning solely to mitigate the distribution shift across the different domains. Specifically, we propose a novel temporal mixup strategy to generate two intermediate augmented views for the source and target domains. Subsequently, we leverage contrastive learning to maximize the similarity between each domain and its corresponding augmented view. The generated views consider the temporal dynamics of time-series data during the adaptation process while inheriting the semantics among the two domains. Hence, we gradually push both domains towards a common intermediate space, mitigating the distribution shift across them. Extensive experiments conducted on four real-world time-series datasets show that our approach can significantly outperform all state-of-the-art UDA methods. The implementation code of CoTMix is available at \href{https://github.com/emadeldeen24/CoTMix}{github.com/emadeldeen24/CoTMix}.
translated by 谷歌翻译
人重新识别(RE-ID)在监督场景中取得了巨大成功。但是,由于模型过于适合所见源域,因此很难将监督模型直接传输到任意看不见的域。在本文中,我们旨在从数据增强的角度来解决可推广的多源人员重新ID任务(即,在培训期间看不见测试域,并且在培训期间看不见测试域,因此我们提出了一种新颖的方法,称为Mixnorm,由域感知的混合范围(DMN)和域软件中心正则化(DCR)组成。不同于常规数据增强,提出的域吸引的混合范围化,以增强从神经网络的标准化视图中训练期间特征的多样性,这可以有效地减轻模型过度适应源域,从而提高概括性。在看不见的域中模型的能力。为了更好地学习域不变的模型,我们进一步开发了域吸引的中心正规化,以更好地将产生的各种功能映射到同一空间中。在多个基准数据集上进行的广泛实验验证了所提出的方法的有效性,并表明所提出的方法可以胜过最先进的方法。此外,进一步的分析还揭示了所提出的方法的优越性。
translated by 谷歌翻译
Domain adaptation aims at generalizing a high-performance learner on a target domain via utilizing the knowledge distilled from a source domain which has a different but related data distribution. One solution to domain adaptation is to learn domain invariant feature representations while the learned representations should also be discriminative in prediction. To learn such representations, domain adaptation frameworks usually include a domain invariant representation learning approach to measure and reduce the domain discrepancy, as well as a discriminator for classification. Inspired by Wasserstein GAN, in this paper we propose a novel approach to learn domain invariant feature representations, namely Wasserstein Distance Guided Representation Learning (WD-GRL). WDGRL utilizes a neural network, denoted by the domain critic, to estimate empirical Wasserstein distance between the source and target samples and optimizes the feature extractor network to minimize the estimated Wasserstein distance in an adversarial manner. The theoretical advantages of Wasserstein distance for domain adaptation lie in its gradient property and promising generalization bound. Empirical studies on common sentiment and image classification adaptation datasets demonstrate that our proposed WDGRL outperforms the state-of-the-art domain invariant representation learning approaches.
translated by 谷歌翻译