我们研究了恢复单位 - 总稀疏主组件$ x \ in \ mathbb {r}^n $在随机矩阵中种植的计算成本,以wigner或wishart尖峰模型(观察$ w + \ lambda xx xx^xx^ \ top $带有从高斯正交集合中绘制的$ w $,或分别来自$ \ Mathcal {n}(0,i_n + \ beta xx^\ top)$的$ n $独立样本,分别为$)。先前的工作表明,当信噪比(分别$ \ lambda $或$ \ beta \ sqrt {n/n} $)是一个小常数,而种植向量中的非零入口的分数为$ \ \ \ | x \ | _0 / n = \ rho $,如果$ \ rho \ sillsim 1 / \ sqrt {n} $,可以在多项式时间内恢复$ x $。虽然可以在较弱的条件下以$ \ rho \ ll 1 $恢复指数时间的$ x $,但据信,除非$ \ rho \ rho \ simsim 1/\ sqrt {n} $,否则不可能多项式时间恢复。我们研究了“可能但难”制度中恢复所需的精确时间,$ 1/\ sqrt {n} \ ll \ ll \ rho \ ll 1 $通过探索次指定时间算法的功能,即,在时间$中运行的算法$ \ exp(n^\ delta)$对于某些常数$ \ delta \ in(0,1)$。对于任何$ 1/\ sqrt {n} \ ll \ rho \ ll 1 $,我们给出了一个恢复算法的运行时大约$ \ exp(\ rho^2 n)$,表明了稀疏和runtime之间的平稳折衷。我们的算法家族在两种现有算法之间平稳地插入:多项式时间对角线阈值算法和$ \ exp(\ rho n)$ - 时间详尽的搜索算法。此外,通过分析低度的似然比,我们提供了严格的证据,表明我们算法实现的权衡是最佳的。
translated by 谷歌翻译
高维统计数据的一个基本目标是检测或恢复嘈杂数据中隐藏的种植结构(例如低级别矩阵)。越来越多的工作研究低级多项式作为此类问题的计算模型的限制模型:在各种情况下,数据的低级多项式可以与最知名的多项式时间算法的统计性能相匹配。先前的工作已经研究了低度多项式的力量,以检测隐藏结构的存在。在这项工作中,我们将这些方法扩展到解决估计和恢复问题(而不是检测)。对于大量的“信号加噪声”问题,我们给出了一个用户友好的下限,以获得最佳的均衡误差。据我们所知,这些是建立相关检测问题的恢复问题低度硬度的第一个结果。作为应用,我们对种植的子静脉和种植的密集子图问题的低度最小平方误差进行了严格的特征,在两种情况下都解决了有关恢复的计算复杂性的开放问题(在低度框架中)。
translated by 谷歌翻译
我们研究了稀疏张量主成分分析的问题:给定张量$ \ pmb y = \ pmb w + \ lambda x ^ {\ otimes p} $ with $ \ pmb w \ in \ otimes ^ p \ mathbb {r} ^ n $拥有iid高斯条目,目标是恢复$ k $ -parse单位矢量$ x \ in \ mathbb {r} ^ n $。该模型捕获稀疏PCA(其Wigner形式)和张量PCA。对于$ k \ leq \ sqrt {n} $的高稀疏制度,我们介绍了一系列平滑地插值在简单的多项式算法和指数时穷举搜索算法之间的算法。对于任何$ 1 \ leq t \ leq k $,我们的算法恢复了信噪比$ \ lambda \ geq \ tilde {\ mathcal {o}}(\ sqrt {t} \ cdot(k / t )^ {p / 2})$时间$ \ tilde {\ mathcal {o}}(n ^ {p + t})$,捕获矩阵设置的最先进的保证(在两者中多项式时间和子指数时间制度)。我们的结果自然地延伸到$ r $ distinct $ k $ -parse信号的案例与不相交的支持,保证与尖峰的数量无关。即使在稀疏PCA的局限性情况下,已知的算法也仅恢复$ \ lambda \ geq \ tilde {\ mathcal {o}}(k \ cdot r)$的稀疏向量,而我们的算法需要$ \ lambda \ geq \ tilde { \ mathcal {o}}(k)$。最后,通过分析低度似然比,我们将这些算法结果补充,具体证据说明信噪比和运行时间之间的权衡。该下限捕获稀疏PCA和张量PCA的已知下限。在这一普通模型中,我们在标准数量$ N $,稀疏$ k $的样本数量之间观察更复杂的三方权衡,以及张力电源$ p $。
translated by 谷歌翻译
我们研究了小组测试问题,其目标是根据合并测试的结果,确定一组k感染的人,这些k含有稀有疾病,这些人在经过测试中至少有一个受感染的个体时返回阳性的结果。团体。我们考虑将个人分配给测试的两个不同的简单随机过程:恒定柱设计和伯努利设计。我们的第一组结果涉及基本统计限制。对于恒定柱设计,我们给出了一个新的信息理论下限,这意味着正确识别的感染者的比例在测试数量越过特定阈值时会经历急剧的“全或全或无所不包”的相变。对于Bernoulli设计,我们确定解决相关检测问题所需的确切测试数量(目的是区分小组测试实例和纯噪声),改善Truong,Aldridge和Scarlett的上限和下限(2020)。对于两个小组测试模型,我们还研究了计算有效(多项式时间)推理程序的能力。我们确定了解决检测问题的低度多项式算法所需的精确测试数量。这为在少量稀疏度的检测和恢复问题中都存在固有的计算统计差距提供了证据。值得注意的是,我们的证据与Iliopoulos和Zadik(2021)相反,后者预测了Bernoulli设计中没有计算统计差距。
translated by 谷歌翻译
聚类是无监督学习中的基本原始,它引发了丰富的计算挑战性推理任务。在这项工作中,我们专注于将$ D $ -dimential高斯混合的规范任务与未知(和可能的退化)协方差集成。最近的作品(Ghosh等人。恢复在高斯聚类实例中种植的某些隐藏结构。在许多类似的推理任务上的工作开始,这些较低界限强烈建议存在群集的固有统计到计算间隙,即群集任务是\ yringit {statistically}可能但没有\ texit {多项式 - 时间}算法成功。我们考虑的聚类任务的一个特殊情况相当于在否则随机子空间中找到种植的超立体载体的问题。我们表明,也许令人惊讶的是,这种特定的聚类模型\ extent {没有展示}统计到计算间隙,即使在这种情况下继续应用上述的低度和SOS下限。为此,我们提供了一种基于Lenstra - Lenstra - Lovasz晶格基础减少方法的多项式算法,该方法实现了$ D + 1 $样本的统计上最佳的样本复杂性。该结果扩展了猜想统计到计算间隙的问题的类问题可以通过“脆弱”多项式算法“关闭”,突出显示噪声在统计到计算间隙的发作中的关键而微妙作用。
translated by 谷歌翻译
Suppose we are given an $n$-dimensional order-3 symmetric tensor $T \in (\mathbb{R}^n)^{\otimes 3}$ that is the sum of $r$ random rank-1 terms. The problem of recovering the rank-1 components is possible in principle when $r \lesssim n^2$ but polynomial-time algorithms are only known in the regime $r \ll n^{3/2}$. Similar "statistical-computational gaps" occur in many high-dimensional inference tasks, and in recent years there has been a flurry of work on explaining the apparent computational hardness in these problems by proving lower bounds against restricted (yet powerful) models of computation such as statistical queries (SQ), sum-of-squares (SoS), and low-degree polynomials (LDP). However, no such prior work exists for tensor decomposition, largely because its hardness does not appear to be explained by a "planted versus null" testing problem. We consider a model for random order-3 tensor decomposition where one component is slightly larger in norm than the rest (to break symmetry), and the components are drawn uniformly from the hypercube. We resolve the computational complexity in the LDP model: $O(\log n)$-degree polynomial functions of the tensor entries can accurately estimate the largest component when $r \ll n^{3/2}$ but fail to do so when $r \gg n^{3/2}$. This provides rigorous evidence suggesting that the best known algorithms for tensor decomposition cannot be improved, at least by known approaches. A natural extension of the result holds for tensors of any fixed order $k \ge 3$, in which case the LDP threshold is $r \sim n^{k/2}$.
translated by 谷歌翻译
我们研究了在存在$ \ epsilon $ - 对抗异常值的高维稀疏平均值估计的问题。先前的工作为此任务获得了该任务的样本和计算有效算法,用于辅助性Subgaussian分布。在这项工作中,我们开发了第一个有效的算法,用于强大的稀疏平均值估计,而没有对协方差的先验知识。对于$ \ Mathbb r^d $上的分布,带有“认证有限”的$ t $ tum-矩和足够轻的尾巴,我们的算法达到了$ o(\ epsilon^{1-1/t})$带有样品复杂性$的错误(\ epsilon^{1-1/t}) m =(k \ log(d))^{o(t)}/\ epsilon^{2-2/t} $。对于高斯分布的特殊情况,我们的算法达到了$ \ tilde o(\ epsilon)$的接近最佳错误,带有样品复杂性$ m = o(k^4 \ mathrm {polylog}(d)(d))/\ epsilon^^ 2 $。我们的算法遵循基于方形的总和,对算法方法的证明。我们通过统计查询和低度多项式测试的下限来补充上限,提供了证据,表明我们算法实现的样本时间 - 错误权衡在质量上是最好的。
translated by 谷歌翻译
我们调查与高斯的混合的数据分享共同但未知,潜在虐待协方差矩阵的数据。我们首先考虑具有两个等级大小的组件的高斯混合,并根据最大似然估计导出最大切割整数程序。当样品的数量在维度下线性增长时,我们证明其解决方案实现了最佳的错误分类率,直到对数因子。但是,解决最大切割问题似乎是在计算上棘手的。为了克服这一点,我们开发了一种高效的频谱算法,该算法达到最佳速率,但需要一种二次样本量。虽然这种样本复杂性比最大切割问题更差,但我们猜测没有多项式方法可以更好地执行。此外,我们收集了支持统计计算差距存在的数值和理论证据。最后,我们将MAX-CUT程序概括为$ k $ -means程序,该程序处理多组分混合物的可能性不平等。它享有相似的最优性保证,用于满足运输成本不平等的分布式的混合物,包括高斯和强烈的对数的分布。
translated by 谷歌翻译
我们考虑强大的线性回归模型$ \ boldsymbol {y} = x \ beta^* + \ boldsymbol {\ eta} $,其中一个对手忽略了design $ x \ in \ mathbb {r}^r}^n \ times D } $可以选择$ \ boldsymbol {\ eta} $以损坏所有观测值的(可能消失的)$ \ boldsymbol {y} $以任意方式。最近的工作[DLN+21,DNS21]引入了有效的算法,以持续恢复参数矢量。这些算法至关重要地依赖于设计矩阵非常广泛(如果其列跨度远非任何稀疏矢量,矩阵就可以很好地扩展)。在本文中,我们表明存在一个缺乏良好性的设计矩阵家族,因此从理论上讲,在上述稳健线性回归模型中,参数向量的持续恢复是不可能的。我们进一步研究了随机矩阵的良好表现的平均案例时间复杂性。我们表明,如果观察值的数量在环境维度上是二次的,则可以有效地证明给定的$ n $ by-by-by-by-by-by-d $ d $ d $高斯矩阵是否会很好地扩展。当观察数为$ O(d^2)$时,我们通过显示出相同认证问题的计算硬度的严格证据来补充这一结果。
translated by 谷歌翻译
随机奇异值分解(RSVD)是用于计算大型数据矩阵截断的SVD的一类计算算法。给定A $ n \ times n $对称矩阵$ \ mathbf {m} $,原型RSVD算法输出通过计算$ \ mathbf {m mathbf {m} $的$ k $引导singular vectors的近似m}^{g} \ mathbf {g} $;这里$ g \ geq 1 $是一个整数,$ \ mathbf {g} \ in \ mathbb {r}^{n \ times k} $是一个随机的高斯素描矩阵。在本文中,我们研究了一般的“信号加上噪声”框架下的RSVD的统计特性,即,观察到的矩阵$ \ hat {\ mathbf {m}} $被认为是某种真实但未知的加法扰动信号矩阵$ \ mathbf {m} $。我们首先得出$ \ ell_2 $(频谱规范)和$ \ ell_ {2 \ to \ infty} $(最大行行列$ \ ell_2 $ norm)$ \ hat {\ hat {\ Mathbf {M}} $和信号矩阵$ \ Mathbf {M} $的真实单数向量。这些上限取决于信噪比(SNR)和功率迭代$ g $的数量。观察到一个相变现象,其中较小的SNR需要较大的$ g $值以保证$ \ ell_2 $和$ \ ell_ {2 \ to \ fo \ infty} $ distances的收敛。我们还表明,每当噪声矩阵满足一定的痕量生长条件时,这些相变发生的$ g $的阈值都会很清晰。最后,我们得出了近似奇异向量的行波和近似矩阵的进入波动的正常近似。我们通过将RSVD的几乎最佳性能保证在应用于三个统计推断问题的情况下,即社区检测,矩阵完成和主要的组件分析,并使用缺失的数据来说明我们的理论结果。
translated by 谷歌翻译
现代神经网络通常以强烈的过度构造状态运行:它们包含许多参数,即使实际标签被纯粹随机的标签代替,它们也可以插入训练集。尽管如此,他们在看不见的数据上达到了良好的预测错误:插值训练集并不会导致巨大的概括错误。此外,过度散色化似乎是有益的,因为它简化了优化景观。在这里,我们在神经切线(NT)制度中的两层神经网络的背景下研究这些现象。我们考虑了一个简单的数据模型,以及各向同性协变量的矢量,$ d $尺寸和$ n $隐藏的神经元。我们假设样本量$ n $和尺寸$ d $都很大,并且它们在多项式上相关。我们的第一个主要结果是对过份术的经验NT内核的特征结构的特征。这种表征意味着必然的表明,经验NT内核的最低特征值在$ ND \ gg n $后立即从零界限,因此网络可以在同一制度中精确插值任意标签。我们的第二个主要结果是对NT Ridge回归的概括误差的表征,包括特殊情况,最小值-ULL_2 $ NORD插值。我们证明,一旦$ nd \ gg n $,测试误差就会被内核岭回归之一相对于无限宽度内核而近似。多项式脊回归的误差依次近似后者,从而通过与激活函数的高度组件相关的“自我诱导的”项增加了正则化参数。多项式程度取决于样本量和尺寸(尤其是$ \ log n/\ log d $)。
translated by 谷歌翻译
我们考虑在排名一的尖刺模型中检测信号的存在的问题。对于一般的非高斯噪声,假设信号是从rademacher先验中汲取的,我们证明,当信号噪声比率低于信号噪声时,尖峰模型的对数可能性比(LR)收敛到高斯一定的阈值。阈值是最佳的,因为在其上方,可以通过转换的主组件分析(PCA)进行可靠的检测。从对数LR的限制高斯的平均值和方差,我们计算了I型误差之和的限制以及似然比测试的类型II误差。对于噪声不对称,但信号是对称的,我们还证明了一个排名一的尖峰IID模型的结果相似。
translated by 谷歌翻译
近似消息传递(AMP)是解决高维统计问题的有效迭代范式。但是,当迭代次数超过$ o \ big(\ frac {\ log n} {\ log log \ log \ log n} \时big)$(带有$ n $问题维度)。为了解决这一不足,本文开发了一个非吸附框架,用于理解峰值矩阵估计中的AMP。基于AMP更新的新分解和可控的残差项,我们布置了一个分析配方,以表征在存在独立初始化的情况下AMP的有限样本行为,该过程被进一步概括以进行光谱初始化。作为提出的分析配方的两个具体后果:(i)求解$ \ mathbb {z} _2 $同步时,我们预测了频谱初始化AMP的行为,最高为$ o \ big(\ frac {n} {\ mathrm {\ mathrm { poly} \ log n} \ big)$迭代,表明该算法成功而无需随后的细化阶段(如最近由\ citet {celentano2021local}推测); (ii)我们表征了稀疏PCA中AMP的非反应性行为(在尖刺的Wigner模型中),以广泛的信噪比。
translated by 谷歌翻译
对于高维和非参数统计模型,速率最优估计器平衡平方偏差和方差是一种常见的现象。虽然这种平衡被广泛观察到,但很少知道是否存在可以避免偏差和方差之间的权衡的方法。我们提出了一般的策略,以获得对任何估计方差的下限,偏差小于预先限定的界限。这表明偏差差异折衷的程度是不可避免的,并且允许量化不服从其的方法的性能损失。该方法基于许多抽象的下限,用于涉及关于不同概率措施的预期变化以及诸如Kullback-Leibler或Chi-Sque-diversence的信息措施的变化。其中一些不平等依赖于信息矩阵的新概念。在该物品的第二部分中,将抽象的下限应用于几种统计模型,包括高斯白噪声模型,边界估计问题,高斯序列模型和高维线性回归模型。对于这些特定的统计应用,发生不同类型的偏差差异发生,其实力变化很大。对于高斯白噪声模型中集成平方偏置和集成方差之间的权衡,我们将较低界限的一般策略与减少技术相结合。这允许我们将原始问题与估计的估计器中的偏差折衷联动,以更简单的统计模型中具有额外的对称性属性。在高斯序列模型中,发生偏差差异的不同相位转换。虽然偏差和方差之间存在非平凡的相互作用,但是平方偏差的速率和方差不必平衡以实现最小估计速率。
translated by 谷歌翻译
我们建立了最佳的统计查询(SQ)下限,以鲁棒地学习某些离散高维分布的家庭。特别是,我们表明,没有访问$ \ epsilon $ -Cruntupted二进制产品分布的有效SQ算法可以在$ \ ell_2 $ -error $ o(\ epsilon \ sqrt {\ log(\ log(1/\ epsilon))内学习其平均值})$。同样,我们表明,没有访问$ \ epsilon $ - 腐败的铁磁高温岛模型的有效SQ算法可以学习到总变量距离$ O(\ Epsilon \ log(1/\ Epsilon))$。我们的SQ下限符合这些问题已知算法的错误保证,提供证据表明这些任务的当前上限是最好的。在技​​术层面上,我们为离散的高维分布开发了一个通用的SQ下限,从低维矩匹配构建体开始,我们认为这将找到其他应用程序。此外,我们介绍了新的想法,以分析这些矩匹配的结构,以进行离散的单变量分布。
translated by 谷歌翻译
我们研究在计算和通信约束下分布式设置中高维稀疏线性回归的问题。具体来说,我们考虑了一个星形拓扑网络,该网络将几台机器连接到融合中心,他们可以与他们交换相对较短的消息。每台机器都有来自线性回归模型的嘈杂样品,该模型具有相同的未知稀疏$ d $ - 维数二维矢量$ \ theta $。融合中心的目标是使用几乎没有计算和有限的通信在每台机器上估算矢量$ \ theta $及其支持。在这项工作中,我们考虑基于正交匹配追求(OMP)的分布式算法,并理论上研究了他们精确收回$ \ theta $的支持的能力。我们证明,在某些条件下,即使在单个机器无法检测到$ \ theta $的支持下,分布式式方法在$ \ theta $的支持下,在$ d $中的总通信sublinear中正确恢复了它。此外,我们提出的模拟说明了基于分布式OMP的算法的性能,并表明它们的性能类似于更复杂和计算密集的方法,在某些情况下甚至表现优于它们。
translated by 谷歌翻译
混合模型被广泛用于拟合复杂和多模式数据集。在本文中,我们研究了具有高维稀疏潜在参数矢量的混合物,并考虑了支持这些向量的恢复的问题。尽管对混合模型中的参数学习进行了充分研究,但稀疏性约束仍然相对尚未探索。参数向量的稀疏性是各种设置的自然约束,支持恢复是参数估计的主要步骤。我们为支持恢复提供有效的算法,该算法具有对数样品的复杂性依赖于潜在空间的维度。我们的算法非常笼统,即它们适用于1)许多不同规范分布的混合物,包括统一,泊松,拉普拉斯,高斯人等。2)在统一参数的不同假设下,线性回归和线性分类器与高斯协变量的混合物与高斯协变量的混合物。在大多数这些设置中,我们的结果是对问题的首先保证,而在其余部分中,我们的结果为现有作品提供了改进。
translated by 谷歌翻译
我们开发机器以设计有效的可计算和一致的估计,随着观察人数而达到零的估计误差,因为观察的次数增长,当面对可能损坏的答复,除了样本的所有品,除了每种量之外的ALL。作为具体示例,我们调查了两个问题:稀疏回归和主成分分析(PCA)。对于稀疏回归,我们实现了最佳样本大小的一致性$ n \ gtrsim(k \ log d)/ \ alpha ^ $和最佳错误率$ o(\ sqrt {(k \ log d)/(n \ cdot \ alpha ^ 2))$ N $是观察人数,$ D $是尺寸的数量,$ k $是参数矢量的稀疏性,允许在数量的数量中为逆多项式进行逆多项式样品。在此工作之前,已知估计是一致的,当Inliers $ \ Alpha $ IS $ O(1 / \ log \ log n)$,即使是(非球面)高斯设计矩阵时也是一致的。结果在弱设计假设下持有,并且在这种一般噪声存在下仅被D'Orsi等人最近以密集的设置(即一般线性回归)显示。 [DNS21]。在PCA的上下文中,我们在参数矩阵上的广泛尖端假设下获得最佳错误保证(通常用于矩阵完成)。以前的作品可以仅在假设下获得非琐碎的保证,即与最基于的测量噪声以$ n $(例如,具有方差1 / n ^ 2 $的高斯高斯)。为了设计我们的估算,我们用非平滑的普通方(如$ \ ell_1 $ norm或核规范)装备Huber丢失,并以一种新的方法来分析损失的新方法[DNS21]的方法[DNS21]。功能。我们的机器似乎很容易适用于各种估计问题。
translated by 谷歌翻译
社区检测是网络科学中的一个基本问题。在本文中,我们考虑了从$ HyperGraph $ $ $ $ $ $ $ $ $ $ $ $ $ $ $(HSBM)中绘制的HyperGraphs中的社区检测,重点是精确的社区恢复。在整个超图未知的情况下,我们研究了多项式时间算法以进行社区检测的性能。取而代之的是,我们获得了$相似性$ $ $ $ $ $ $ w $,其中$ w_ {ij} $报告包含$ i $和$ j $的超补品的数量。在此信息模型下,Kim,Bandeira和Goemans [KBG18]确定了信息理论阈值,以进行精确恢复,并提出了他们认为是最佳的半决赛编程松弛。在本文中,我们确认了这个猜想。我们还表明,一种简单,高效的光谱算法是最佳的,将光谱算法作为选择方法。我们对光谱算法的分析至关重要地依赖于$ w $的特征向量上的强$ entrywise $界限。我们的边界灵感来自Abbe,Fan,Wang和Zhong [AFWZ20]的工作,他们开发了具有独立条目的对称矩阵的特征向量的进入界。尽管相似性矩阵的依赖性结构复杂,但我们证明了相似的入口保证。
translated by 谷歌翻译
我们考虑了在高维度中平均分离的高斯聚类混合物的问题。我们是从$ k $身份协方差高斯的混合物提供的样本,使任何两对手段之间的最小成对距离至少为$ \ delta $,对于某些参数$ \ delta> 0 $,目标是恢复这些样本的地面真相聚类。它是分离$ \ delta = \ theta(\ sqrt {\ log k})$既有必要且足以理解恢复良好的聚类。但是,实现这种担保的估计值效率低下。我们提供了在多项式时间内运行的第一算法,几乎符合此保证。更确切地说,我们给出了一种算法,它需要多项式许多样本和时间,并且可以成功恢复良好的聚类,只要分离为$ \ delta = \ oomega(\ log ^ {1/2 + c} k)$ ,任何$ c> 0 $。以前,当分离以k $的分离和可以容忍$ \ textsf {poly}(\ log k)$分离所需的quasi arynomial时间时,才知道该问题的多项式时间算法。我们还将我们的结果扩展到分布的分布式的混合物,该分布在额外的温和假设下满足Poincar \ {e}不等式的分布。我们认为我们相信的主要技术工具是一种新颖的方式,可以隐含地代表和估计分配的​​高度时刻,这使我们能够明确地提取关于高度时刻的重要信息而没有明确地缩小全瞬间张量。
translated by 谷歌翻译