由于其损耗函数的无限性,经典的铰链损耗支撑矢量机(SVM)模型对异常观测值敏感。为了解决这个问题,最近的研究集中在非凸损失函数上,例如硬质量损失,该损失将恒定的罚款与任何错误分类或细边样品内的样本相关联。应用此损失函数可为关键应用带来急需的鲁棒性,但它也导致NP硬化模型,这使训练变得困难,因为当前的精确优化算法显示有限的可伸缩性,而启发式方法无法始终找到高质量的解决方案。在这种背景下,我们提出了新的整数编程策略,这些策略可显着提高我们将硬利润SVM模型培训为全球最优性的能力。我们引入了一种迭代采样和分解方法,其中使用较小的子问题来分离组合弯曲器的切割。这些切割量在分支和切割算法中的使用,可以更快地收敛到全球最佳。通过对经典基准数据集的大量数值分析,我们的解决方案算法首次求解了117个新数据集,以达到最佳性,并在基准最困难的数据集的平均最佳差距中降低了50%。
translated by 谷歌翻译
In recent years there has been growing attention to interpretable machine learning models which can give explanatory insights on their behavior. Thanks to their interpretability, decision trees have been intensively studied for classification tasks, and due to the remarkable advances in mixed-integer programming (MIP), various approaches have been proposed to formulate the problem of training an Optimal Classification Tree (OCT) as a MIP model. We present a novel mixed-integer quadratic formulation for the OCT problem, which exploits the generalization capabilities of Support Vector Machines for binary classification. Our model, denoted as Margin Optimal Classification Tree (MARGOT), encompasses the use of maximum margin multivariate hyperplanes nested in a binary tree structure. To enhance the interpretability of our approach, we analyse two alternative versions of MARGOT, which include feature selection constraints inducing local sparsity of the hyperplanes. First, MARGOT has been tested on non-linearly separable synthetic datasets in 2-dimensional feature space to provide a graphical representation of the maximum margin approach. Finally, the proposed models have been tested on benchmark datasets from the UCI repository. The MARGOT formulation turns out to be easier to solve than other OCT approaches, and the generated tree better generalizes on new observations. The two interpretable versions are effective in selecting the most relevant features and maintaining good prediction quality.
translated by 谷歌翻译
符合使用机器学习的不断增长的趋势,帮助解决组合优化问题,一个有希望的想法是通过使用学习的策略来改善混合整数编程(MIP)分支和绑定树内的节点选择。以前使用模仿学习的工作指示通过学习自适应节点搜索顺序来获取节点选择策略的可行性。相比之下,我们的模仿学习策略仅专注于学习节点的孩子中的哪一个选择。我们介绍了一个脱机方法,用于在两个设置中学习这样的策略:一个通过致力于修剪节点的启发式;一个是从叶子精确和背溯以保证找到最佳整数解决方案的备用。前一个设置对应于困扰期间的儿童选择器,而后者则类似于潜水启发式。我们在热情和确切的设置中将策略应用于流行的开源求解器SCIP。五个MIP数据集的经验结果表明,我们的节点选择策略比文献中最先进的先例更快地导致解决方案。虽然我们在精确解决方案的时间内没有击败高度优化的SCIP状态基准节点选择器,但如果预测模型的准确性足够,我们的启发式政策比所有基线都具有始终如一的最佳最优性差距。此外,结果还表明,当应用时间限制时,我们的启发式方法发现比测试大多数问题中所有基线的更好的解决方案。我们通过表明学习的政策模仿了SCIP基线来解释结果,但没有后者早期的暴跌中止。我们的建议是,尽管对文献的清晰改进,但这种MIP儿童选择器在更广泛的方法中更好地使用MIP分支和束缚树决策。
translated by 谷歌翻译
最小的平方和群集(MSSC)或K-Means型聚类,传统上被认为是无监督的学习任务。近年来,使用背景知识来提高集群质量,促进聚类过程的可解释性已成为数学优化和机器学习研究的热门研究课题。利用数据群集中的背景信息的问题称为半监督或约束群集。在本文中,我们为半监控MSSC提供了一种新的分支和绑定算法,其中背景知识被包含为成对必须 - 链接和无法链接约束。对于较低的界限,我们解决了MSSC离散优化模型的Semidefinite编程宽松,并使用了用于加强界限的纤维平面程序。相反,通过使用整数编程工具,我们提出了将K-Means算法适应受约束的情况。这是第一次,所提出的全局优化算法有效地管理,以解决现实世界的情况,最高可达800个数据点,具有必要的必须 - 链接和无法链接约束以及通用数量的功能。这个问题大小大约比最先进的精确算法解决的实例大约四倍。
translated by 谷歌翻译
最近,Conic优化已成为设计可用于非凸多项式优化问题的可拖动和保证算法的强大工具。一方面,易处理性对于有效解决大规模问题至关重要,另一方面,需要强大的界限来确保高质量的解决方案。在这项研究中,我们通过添加基于线性,二阶锥体和半决赛编程的九种不同类型的约束来研究多项式优化问题的RLT松弛,以解决最佳实例,以实现良好的测试集的实例多项式优化问题。我们描述了如何设计这些圆锥约束及其性能相对于彼此以及标准RLT松弛的设计。我们的第一个发现是,非线性约束的不同变体(二阶锥体和半芬矿)是$ 50 \%$ $ $ $ 50 $ $的最佳性能。此外,我们提出了一种机器学习方法来决定给定实例最合​​适的约束。计算结果表明,机器学习方法显着优于九种单独方法中的每一种。
translated by 谷歌翻译
我们研究了通过具有整流线性单元(Relu)激活的前馈神经网络建模目标函数的优化问题。最近的文献已经探讨了单一神经网络的使用来模拟目标函数内的不确定或复杂元素。然而,众所周知,神经网络的集合产生更稳定的预测,并且具有比具有单个神经网络的模型更好的普遍性,这表明在决策管道中应用神经网络的集合。我们研究如何将神经网络集合纳入优化模型的客观函数,并探索随后的问题的计算方法。我们基于现有流行的大量M $配方提供了一种混合整数线性程序,以优化单个神经网络。我们为我们的模型开发了两个加速技术,首先是一种预处理程序,用于拧紧神经网络中的关键神经元的界限,而第二个是基于弯曲分解的一组有效的不等式。我们解决方案方法的实验评估在一个全球优化问题和两个现实世界数据集中进行;结果表明,我们的优化算法在计算时间和最优性间隙方面优于最先进的方法的适应。
translated by 谷歌翻译
最近已扩展了最小方形聚类(MSSC)或K-均值类型聚类的最小总和,以利用每个群集的基数的先验知识。这种知识用于提高性能以及解决方案质量。在本文中,我们提出了一种基于分支和切割技术的精确方法,以解决基数受限的MSSC。对于下边界的例程,我们使用Rujeerapaiboon等人最近提出的半决赛编程(SDP)放松。 [Siam J. Optim。 29(2),1211-1239,(2019)]。但是,这种放松只能用于小型实例中的分支和切割方法。因此,我们得出了一种新的SDP松弛,该松弛随着实例大小和簇的数量更好。在这两种情况下,我们都通过添加多面体切割来增强结合。从量身定制的分支策略中受益,该策略会实施成对的约束,我们减少了儿童节点中出现的问题的复杂性。相反,对于上限,我们提出了一个本地搜索过程,该过程利用在每个节点上求解的SDP松弛的解。计算结果表明,所提出的算法在全球范围内首次求解了大小的现实实例,比通过最新精确方法求解的算法大10倍。
translated by 谷歌翻译
在这项研究中,我们提出了一个深入的学习优化框架,以解决动态的混合企业计划。具体而言,我们开发了双向长期内存(LSTM)框架,可以及时向前和向后处理信息,以学习最佳解决方案,以解决顺序决策问题。我们展示了我们在预测单项电容批号问题(CLSP)的最佳决策方面的方法,其中二进制变量表示是否在一个时期内产生。由于问题的动态性质,可以将CLSP视为序列标记任务,在该任务中,复发性神经网络可以捕获问题的时间动力学。计算结果表明,我们的LSTM优化(LSTM-OPT)框架大大减少了基准CLSP问题的解决方案时间,而没有太大的可行性和最佳性。例如,对于240,000多个测试实例,在85 \%级别的预测平均将CPLEX溶液的时间减少了9倍,最佳差距小于0.05 \%\%和0.4 \%\%\%\%\%的不可行性。此外,使用较短的计划范围训练的模型可以成功预测具有更长计划范围的实例的最佳解决方案。对于最困难的数据集,LSTM在25 \%级别的LSTM预测将70 CPU小时的溶液时间降低至小于2 CPU分钟,最佳差距为0.8 \%,而没有任何不可行。 LSTM-OPT框架在解决方案质量和精确方法方面,诸如Logistic回归和随机森林之类的经典ML算法(例如($ \ ell $,s)和基于动态编程的不平等,解决方案时间的改进。我们的机器学习方法可能有益于解决类似于CLSP的顺序决策问题,CLSP需要重复,经常和快速地解决。
translated by 谷歌翻译
本文考虑了在分解正常形式(DNF,ANDS的DNF,ANDS,相当于判定规则集)或联合正常形式(CNF,ORS)作为分类模型的联合正常形式的学习。为规则简化,将整数程序配制成最佳贸易分类准确性。我们还考虑公平设定,并扩大制定,以包括对两种不同分类措施的明确限制:机会平等和均等的赔率。列生成(CG)用于有效地搜索候选条款(连词或剖钉)的指数数量,而不需要启发式规则挖掘。此方法还会绑定所选规则集之间的间隙和培训数据上的最佳规则集。要处理大型数据集,我们建议使用随机化的近似CG算法。与三个最近提出的替代方案相比,CG算法主导了16个数据集中的8个中的精度简单折衷。当最大限度地提高精度时,CG与为此目的设计的规则学习者具有竞争力,有时发现明显更简单的解决方案,这些解决方案不太准确。与其他公平和可解释的分类器相比,我们的方法能够找到符合较严格的公平概念的规则集,以适度的折衷准确性。
translated by 谷歌翻译
组合优化是运营研究和计算机科学领域的一个公认领域。直到最近,它的方法一直集中在孤立地解决问题实例,而忽略了它们通常源于实践中的相关数据分布。但是,近年来,人们对使用机器学习,尤其是图形神经网络(GNN)的兴趣激增,作为组合任务的关键构件,直接作为求解器或通过增强确切的求解器。GNN的电感偏差有效地编码了组合和关系输入,因为它们对排列和对输入稀疏性的意识的不变性。本文介绍了对这个新兴领域的最新主要进步的概念回顾,旨在优化和机器学习研究人员。
translated by 谷歌翻译
通过边界估计可以显着简化求解约束优化问题(COP),即提供成本函数的紧密边界。通过使用由已知边界的数据组成的数据以及COMPS提取的特征来馈送监督机器学习(ML)模型,可以训练模型以估计新COP实例的边界。在本文中,我们首先概述了来自问题实例的约束编程(CP)的ML的现有知识体系。其次,我们介绍了应用于支持CP解算器的工具的边界估计框架。在该框架内,讨论并评估了不同的ML模型,并评估其对边界估计的适用性,并避免避免求解器找到最佳解决方案的不可行估计的对策。第三,我们在七个警察中提出了一种实验研究,与不同的CP溶剂。我们的结果表明,可以仅限于这些警察的近似最佳边界。这些估计的边界将客观域大小减少60-88%,可以帮助求解器在搜索期间提前找到近乎最佳解决方案。
translated by 谷歌翻译
This paper surveys the recent attempts, both from the machine learning and operations research communities, at leveraging machine learning to solve combinatorial optimization problems. Given the hard nature of these problems, state-of-the-art algorithms rely on handcrafted heuristics for making decisions that are otherwise too expensive to compute or mathematically not well defined. Thus, machine learning looks like a natural candidate to make such decisions in a more principled and optimized way. We advocate for pushing further the integration of machine learning and combinatorial optimization and detail a methodology to do so. A main point of the paper is seeing generic optimization problems as data points and inquiring what is the relevant distribution of problems to use for learning on a given task.
translated by 谷歌翻译
识别变量之间的原因关系是决策过程的关键步骤。虽然因果推断需要随机实验,但研究人员和政策制定者越来越多地利用观测研究由于观察数据的广泛可用性和实验的不可行性而导致的因果假设。匹配方法是对观察数据进行因果推断的最常用技术。然而,由于实验者制造的不同选择,一对一匹配中的对分配过程在推论中产生不确定性。最近,提出了离散优化模型来解决这种不确定性。虽然具有离散优化模型可能的强大推断,但它们产生非线性问题并缺乏可扩展性。在这项工作中,我们提出了贪婪的算法来解决与持续结果的观测数据的强大因果推断测试实例。我们提出了一个独特的框架,可以重新设计非线性二进制优化问题作为可行性问题。通过利用可行性制定的结构,我们开发贪婪方案,以求解稳健的测试问题。在许多情况下,所提出的算法实现全球最佳解决方案。我们在三个现实世界数据集上执行实验,以展示所提出的算法的有效性,并将我们的结果与最先进的求解器进行比较。我们的实验表明,所提出的算法在计算时间方面显着优于精确的方法,同时实现了同样的因果试验结论。两个数值实验和复杂性分析都表明所提出的算法确保在决策过程中利用大数据的力量所需的可扩展性。
translated by 谷歌翻译
柱生成(CG)是解决大规模优化问题的有效方法。CG通过求解列(即变量)的子集并逐渐包括可以改善当前子问题的解决方案的新列。通过反复解决定价问题,根据需要产生新列,这通常是NP - 硬的并且是CG方法的瓶颈。为了解决这个问题,我们提出了一种基于机器学习的定价启发式(MLPH),可以有效地产生许多高质量的柱。在CG的每次迭代中,我们的MLPH利用ML模型来预测定价问题的最佳解决方案,然后用于引导采样方法以有效地产生多个高质量柱。使用图形着色问题,我们经验证明,与六种最先进的方法相比,MLPH显着增强,并且CG的改善可能导致分支和价格精确方法的显着更好的性能。
translated by 谷歌翻译
混合成员非线性优化是具有组合结构和非线性的广泛问题。典型的精确方法将分支和结合的方案与放松和分离子例程相结合。我们研究了基于此设置的Frank-Wolfe算法的错误自适应一阶方法的属性和优势,仅需要梯度甲骨文来实现目标函数和可行集合上的线性优化。特别是,我们将研究通过分支和结合方法进行优化的算法后果,在这种方法中,由于Frank-Wolfe线性甲骨文而引起的混合构件的凸面上的子问题与解决连续放松上的子问题相比同一组。这种新颖的方法在处理多面体约束的单个表示时计算可行的解决方案,利用了没有外近似方案的混合智能编程(MIP)求解器的全部范围。
translated by 谷歌翻译
我们在运营研究和机器学习(ML)的Nexus中提出了一种方法,该方法利用了从ML提供的通用近似器,以加速混合智能线性两阶段随机程序的解决方案。我们旨在解决第二阶段高度要求的问题。我们的核心思想是通过用快速而准确的监督ML预测替换确切的第二阶段解决方案,从而在在线解决方案时间中大量减少,同时,在第一阶段解决方案准确性中略有降低。当随着时间的推移反复解决类似问题时,在与车队管理,路由和集装箱院子管理有关的运输计划中反复解决类似问题时,对ML的前期投资将是合理的。我们的数值结果集中在与整数和连续L形切口中的问题类别解决的问题类别。我们的广泛的经验分析基于从随机服务器位置(SSLP)和随机多主背包(SMKP)问题的标准化家族基础。所提出的方法可以在不到9%的时间内解决SSLP的最难实例,而在SMKP的情况下,同一图为20%。在大多数情况下,平均最佳差距少于0.1%。
translated by 谷歌翻译
In the last years, there has been a great interest in machine-learning-based heuristics for solving NP-hard combinatorial optimization problems. The developed methods have shown potential on many optimization problems. In this paper, we present a learned heuristic for the reoptimization of a problem after a minor change in its data. We focus on the case of the capacited vehicle routing problem with static clients (i.e., same client locations) and changed demands. Given the edges of an original solution, the goal is to predict and fix the ones that have a high chance of remaining in an optimal solution after a change of client demands. This partial prediction of the solution reduces the complexity of the problem and speeds up its resolution, while yielding a good quality solution. The proposed approach resulted in solutions with an optimality gap ranging from 0\% to 1.7\% on different benchmark instances within a reasonable computing time.
translated by 谷歌翻译
机器学习(ML)管道中的组合优化(CO)层是解决数据驱动决策任务的强大工具,但它们面临两个主要挑战。首先,CO问题的解通常是其客观参数的分段常数函数。鉴于通常使用随机梯度下降对ML管道进行训练,因此缺乏斜率信息是非常有害的。其次,标准ML损失在组合设置中不能很好地工作。越来越多的研究通过各种方法解决了这些挑战。不幸的是,缺乏维护良好的实现会减慢采用CO层的速度。在本文的基础上,我们对CO层介绍了一种概率的观点,该观点自然而然地是近似分化和结构化损失的构建。我们从文献中恢复了许多特殊情况的方法,我们也得出了新方法。基于这个统一的观点,我们提出了inferpopt.jl,一个开源的朱莉娅软件包,1)允许将任何具有线性物镜的Co Oracle转换为可区分的层,以及2)定义足够的损失以训练包含此类层的管道。我们的图书馆使用任意优化算法,并且与朱莉娅的ML生态系统完全兼容。我们使用视频游戏地图上的探索问题来证明其能力。
translated by 谷歌翻译
为混合整数线性编程问题(MILLS)找到高质量解决方案对于许多实际应用非常重要。在这方面,提出了精炼启发式局部分支(LB)来生产改进解决方案,并且对MILP中的本地搜索方法的开发产生了高度影响力。该算法迭代地探索由所谓的本地分支约束定义的一系列解决方案邻域,即,限制与参考解决方案的距离的线性不等式。对于LB算法,邻域大小的选择对于性能至关重要。虽然它是由原始LB方案中的保守值初始化的,但我们的新观察是最佳规模强烈依赖于特定的MILP实例。在这项工作中,我们调查搜索附近的大小与底层LB算法的行为之间的关系,我们设计了一种基于倾斜的框架,用于引导LB启发式的邻居搜索。该框架由两阶段战略组成。对于第一阶段,训练缩放的回归模型以通过回归任务在第一迭代中预测LB邻域的大小。在第二阶段,我们利用加强学习和设计加强的邻域搜索策略,以动态调整随后的迭代处的大小。我们计算地表明,确实可以学习邻域大小,导致改进的性能,并且整个算法在实例大小相对于实例大小概括,并且显着地跨越实例概括。
translated by 谷歌翻译
We study iterative methods for (two-stage) robust combinatorial optimization problems with discrete uncertainty. We propose a machine-learning-based heuristic to determine starting scenarios that provide strong lower bounds. To this end, we design dimension-independent features and train a Random Forest Classifier on small-dimensional instances. Experiments show that our method improves the solution process for larger instances than contained in the training set and also provides a feature importance-score which gives insights into the role of scenario properties.
translated by 谷歌翻译