特征选择是一个棘手的问题,因此实用算法通常折衷对计算时间解的精度。在本文中,我们提出了利用近似,或代理人的多层次的一种新型的多阶段特征选择框架。这种框架允许使用的包装在计算上更多有效的方式方法,显著增加的特征选择的解决方案的质量可以实现的,尤其是在大型数据集。我们设计和评估是一个替代辅助遗传算法(SAGA),它利用这个概念在勘探早期阶段,引导进化搜索。 SAGA只有切换到在最后开发阶段评估原有的功能。我们证明了上限SAGA替代辅助阶段的运行时间是雪上加霜等于包装GA,而且更好地扩展为实例数高位复杂性的归纳算法。我们证明,使用来自UCI ML储存部14个集,在实践中SAGA显著降低与基线相比包装遗传算法(GA)的计算时间,而汇聚成显著精度更高的解决方案。我们的实验表明,SAGA能以接近最优的解决方案不是一个包装GA快三倍到达,平均。我们还展示了旨在防止代理人误导向错误的最优进化搜索进化控制方法的重要性。
translated by 谷歌翻译
信息科学的快速发展引起的“维度诅咒”在处理大数据集时可能会产生负面影响。在本文中,我们提出了Sparrow搜索算法(SSA)的一种变体,称为帐篷L \'evy飞行麻雀搜索算法(TFSSA),并使用它来选择包装模式中最佳的特征子集以进行分类。 SSA是最近提出的算法,尚未系统地应用于特征选择问题。通过CEC2020基准函数进行验证后,TFSSA用于选择最佳功能组合,以最大化分类精度并最大程度地减少所选功能的数量。将拟议的TFSSA与文献中的九种算法进行了比较。 9个评估指标用于正确评估和比较UCI存储库中21个数据集上这些算法的性能。此外,该方法应用于冠状病毒病(COVID-19)数据集,分别获得最佳的平均分类精度和特征选择的平均数量,为93.47%和2.1。实验结果证实了所提出的算法在提高分类准确性和减少与其他基于包装器的算法相比的选定特征数量方面的优势。
translated by 谷歌翻译
多目标优化问题的目标在现实世界中通常会看到不同的评估成本。现在,此类问题被称为异质目标(HE-MOPS)的多目标优化问题。然而,到目前为止,只有少数研究来解决HE-MOPS,其中大多数专注于一个快速目标和一个缓慢目标的双向目标问题。在这项工作中,我们旨在应对具有两个以上黑盒和异质目标的He-mops。为此,我们通过利用He-Mops中廉价且昂贵的目标的不同数据集来减轻因评估不同目标而导致的搜索偏见,从而减轻了廉价且昂贵的目标,从而为HE-MOPS开发了多目标贝叶斯进化优化方法。为了充分利用两个不同的培训数据集,一种对所有目标进行评估的解决方案,另一个与仅在快速目标上进行评估的解决方案,构建了两个单独的高斯过程模型。此外,提出了一种新的采集函数,以减轻对快速目标的搜索偏见,从而在收敛与多样性之间达到平衡。我们通过对广泛使用的多/多目标基准问题进行测试来证明该算法的有效性,这些问题被认为是异质昂贵的。
translated by 谷歌翻译
合奏学习在机器学习方面取得了成功,比其他学习方法具有重大优势。袋装是一种突出的合奏学习方法,它创建了被称为袋子的数据子组,该数据被单独的机器学习方法(例如决策树)培训。随机森林是学习过程中具有其他功能的袋装的重要例子。 \ textColor {black} {当单个学习者具有较高的偏见时,包装的限制是汇总预测中的高偏置(模型不足)。}进化算法已突出用于优化问题,并且也用于机器学习。进化算法是无梯度的方法,具有多种候选解决方案,可维持创建新解决方案的多样性。在传统的包装合奏学习中,制作了一次袋子,而在培训示例方面,内容是在学习过程中固定的。在我们的论文中,我们提出了进化装袋的合奏学习,我们利用进化算法来发展袋子的内容,以通过迭代袋中提供多样性来增强合奏。结果表明,在某些约束下,我们的进化合奏装袋方法优于几个基准数据集的常规合奏方法(包装和随机森林)。进化装袋可以固有地维持一套不同的行李,而无需牺牲任何数据。
translated by 谷歌翻译
大多数机器学习算法由一个或多个超参数配置,必须仔细选择并且通常会影响性能。为避免耗时和不可递销的手动试验和错误过程来查找性能良好的超参数配置,可以采用各种自动超参数优化(HPO)方法,例如,基于监督机器学习的重新采样误差估计。本文介绍了HPO后,本文审查了重要的HPO方法,如网格或随机搜索,进化算法,贝叶斯优化,超带和赛车。它给出了关于进行HPO的重要选择的实用建议,包括HPO算法本身,性能评估,如何将HPO与ML管道,运行时改进和并行化结合起来。这项工作伴随着附录,其中包含关于R和Python的特定软件包的信息,以及用于特定学习算法的信息和推荐的超参数搜索空间。我们还提供笔记本电脑,这些笔记本展示了这项工作的概念作为补充文件。
translated by 谷歌翻译
算法配置(AC)与对参数化算法最合适的参数配置的自动搜索有关。目前,文献中提出了各种各样的交流问题变体和方法。现有评论没有考虑到AC问题的所有衍生物,也没有提供完整的分类计划。为此,我们引入分类法以分别描述配置方法的交流问题和特征。我们回顾了分类法的镜头中现有的AC文献,概述相关的配置方法的设计选择,对比方法和问题变体相互对立,并描述行业中的AC状态。最后,我们的评论为研究人员和从业人员提供了AC领域的未来研究方向。
translated by 谷歌翻译
最近几十年来,已经采用了用于解决各种多主体优化问题(MOPS)的多主体进化算法(MOEAS)的显着进步。但是,这些逐渐改善的MOEAS并不一定配备了精致的可扩展和可学习的解决问题的策略,这些策略能够应对缩放型拖把带来的新的和宏伟的挑战,并不断提高各种方面的复杂性或规模,主要包括昂贵的方面,包括昂贵的方面。功能评估,许多目标,大规模搜索空间,时变环境和多任务。在不同的情况下,它需要不同的思考来设计新的强大MOEAS,以有效地解决它们。在这种情况下,对可学习的MOEAS进行的研究,以机器学习技术进行缩放的拖把,在进化计算领域受到了广泛的关注。在本文中,我们从可扩展的拖把和可学习的MOEAS的分类学开始,然后分析将拖把构成对传统MOEAS的挑战的分析。然后,我们综合概述了可学习的MOEAS的最新进展,以求解各种扩展拖把,主要集中在三个有吸引力的有前途的方向上(即,可学习的环境选择的可学习的进化鉴别器,可学习的进化生物的可学习生殖发生器,以及可学习的进化转移,用于分享或分享或分享或进行分享或可学习的转移。不同问题域之间的经验)。在本文中提供了有关可学习的MOEAS的见解,以参考该领域的努力的一般踪迹。
translated by 谷歌翻译
基准套件提供了对进化算法解决问题能力的有用度量,但是组成问题通常太复杂了,无法清洁算法的优势和劣势。在这里,我们介绍了基准套件档案(``进化运行中的选择方案的诊断概述''),以实证分析有关剥削和探索重要方面的选择方案。利用从根本上是攀岩,但我们考虑两种情况:纯剥削,可以独立优化表示形式中的每个位置,并且受到限制的利用,在该位置之间,由于位置之间的相互作用,向上进展更加有限。当优化路径不太清楚时,需要探索;我们认为能够遵循多个独立的爬山途径和跨健身山谷的能力。这些场景的每种组合都会产生独特的适应性景观,有助于表征与给定选择方案相关的进化动力学。我们分析了六个流行的选择方案。锦标赛的选择和截断选择都在剥削指标方面表现出色,但在需要探索时表现不佳;相反,新颖的搜索在探索方面表现出色,但未能利用梯度。在克服欺骗时,健身共享表现良好,但在所有其他诊断方面都很差。非主导的分类是维持由居住在多个Optima居住的个体组成的不同人群的最佳选择,但努力有效利用梯度。词汇酶选择平衡搜索空间探索而不牺牲剥削,通常在诊断方面表现良好。我们的工作证明了诊断对快速建立对选择方案特征的直观理解的价值,然后可以将其用于改进或开发新的选择方法。
translated by 谷歌翻译
排名汇总旨在将许多替代品的偏好排名与不同选民的偏替排名组合成单一共识排名。然而,作为各种实际应用的有用模型,它是一个计算上有挑战性的问题。在本文中,我们提出了一种有效的混合进化排名算法来解决完整和部分排名的排名聚集问题。该算法具有基于协调对的语义交叉,并通过有效的增量评估技术加强了较晚的验收本地搜索。进行实验以评估算法,与最先进的算法相比,表明基准实例上具有高度竞争性能。为了展示其实际有用性,算法应用于标签排名,这是一个重要的机器学习任务。
translated by 谷歌翻译
自动化封路计优化(HPO)已经获得了很大的普及,并且是大多数自动化机器学习框架的重要成分。然而,设计HPO算法的过程仍然是一个不系统和手动的过程:确定了现有工作的限制,提出的改进是 - 即使是专家知识的指导 - 仍然是一定任意的。这很少允许对哪些算法分量的驾驶性能进行全面了解,并且承载忽略良好算法设计选择的风险。我们提出了一个原理的方法来实现应用于多倍性HPO(MF-HPO)的自动基准驱动算法设计的原则方法:首先,我们正式化包括的MF-HPO候选的丰富空间,但不限于普通的HPO算法,然后呈现可配置的框架覆盖此空间。要自动和系统地查找最佳候选者,我们遵循通过优化方法,并通过贝叶斯优化搜索算法候选的空间。我们挑战是否必须通过执行消融分析来挑战所发现的设计选择或可以通过更加天真和更简单的设计。我们观察到使用相对简单的配置,在某些方式中比建立的方法更简单,只要某些关键配置参数具有正确的值,就可以很好地执行得很好。
translated by 谷歌翻译
分类是数据挖掘和机器学习领域中研究最多的任务之一,并且已经提出了文献中的许多作品来解决分类问题,以解决多个知识领域,例如医学,生物学,安全性和遥感。由于没有单个分类器可以为各种应用程序取得最佳结果,因此,一个很好的选择是采用分类器融合策略。分类器融合方法成功的关键点是属于合奏的分类器之间多样性和准确性的结合。借助文献中可用的大量分类模型,一个挑战是选择最终分类系统的最合适的分类器,从而产生了分类器选择策略的需求。我们通过基于一个称为CIF-E(分类器,初始化,健身函数和进化算法)的四步协议的分类器选择和融合的框架来解决这一点。我们按照提出的CIF-E协议实施和评估24种各种集合方法,并能够找到最准确的方法。在文献中最佳方法和许多其他基线中,还进行了比较分析。该实验表明,基于单变量分布算法(UMDA)的拟议进化方法可以超越许多著名的UCI数据集中最新的文献方法。
translated by 谷歌翻译
在许多科学领域中发现一个有意义的,尺寸同质的,象征性的表达是一个基本挑战。我们提出了一个新颖的开源计算框架,称为科学家机器方程探测器(Scimed),该框架将科学纪律智慧与科学家在循环的方法中融合在一起,并将其与最先进的符号回归(SR)方法相结合。Scimed将基于遗传算法的包装器选择方法与自动机器学习和两个SR方法结合在一起。我们对具有和没有非线性空气动力学阻力的球体沉降的四个配置进行了测试。我们表明,疲惫不堪的人足够坚固,可以从嘈杂的数据中发现正确的物理有意义的符号表达式。我们的结果表明,与最先进的SR软件包相比,这些任务的性能更好。
translated by 谷歌翻译
超参数优化构成了典型的现代机器学习工作流程的很大一部分。这是由于这样一个事实,即机器学习方法和相应的预处理步骤通常只有在正确调整超参数时就会产生最佳性能。但是在许多应用中,我们不仅有兴趣仅仅为了预测精度而优化ML管道;确定最佳配置时,必须考虑其他指标或约束,从而导致多目标优化问题。由于缺乏知识和用于多目标超参数优化的知识和容易获得的软件实现,因此通常在实践中被忽略。在这项工作中,我们向读者介绍了多个客观超参数优化的基础知识,并激励其在应用ML中的实用性。此外,我们从进化算法和贝叶斯优化的领域提供了现有优化策略的广泛调查。我们说明了MOO在几个特定ML应用中的实用性,考虑了诸如操作条件,预测时间,稀疏,公平,可解释性和鲁棒性之类的目标。
translated by 谷歌翻译
野火是一种高度普遍的多毒环境现象。这种现象的影响包括人类损失,环境破坏和高昂的经济成本。为了减轻这些效果,已经开发了几个计算机模拟系统,以根据一组输入参数预测火灾行为,也称为场景(风速和方向;温度;等)。但是,由于未知的变量值的不确定性,模拟的结果通常具有高度的误差,因为它们尚不清楚,或者由于其测量可能是不精确,错误或无法实时执行的。先前的工作提出了多种结果的组合,以减少这种不确定性。最先进的方法基于并行优化策略,该策略使用健身函数来指导所有可能场景之间的搜索。尽管这些方法显示了预测质量的改善,但它们具有与用于选择场景的算法有关的一些局限性。为了克服这些局限性,在这项工作中,我们建议应用新颖性搜索范式,该范围取代了目标函数的量度,以衡量所找到的解决方案的新颖性,这使搜索可以与彼此不同的行为不断生成解决方案。这种方法避免了本地Optima,并且可能能够找到有用的解决方案,而其他算法很难或无法找到。与现有方法一样,该提案也可以适用于其他传播模型(洪水,雪崩或滑坡)。
translated by 谷歌翻译
由于问题的大规模性质,机器学习算法中的封锁率调整是一种计算挑战性的任务。为了开发高参数调整的有效策略,一个有希望的解决方案是使用群体智能算法。人造蜜蜂殖民地(ABC)优化为此目的作为一个有希望有效的优化算法。然而,在某些情况下,由于初始解决方案较差和昂贵的客观函数,ABC可能遭受缓慢的收敛速度或执行时间。为了解决这些问题,提出了一种新颖的算法,OPTABC,以帮助ABC算法更快地达到近最佳解决方案。 Optabc集成了人造蜂殖民地算法,K均值聚类,贪婪算法和基于反对的学习策略,用于调整不同机器学习模型的超参数。 Optabc采用这些技术,以试图多样化初始群体,因此增强了收敛能力,而不会显着降低准确性。为了验证所提出的方法的性能,我们将结果与先前的最先进的方法进行比较。实验结果表明,与文献中的现有方法相比,Optabc的有效性。
translated by 谷歌翻译
本文提出了一种新的方法,称为模块化语法进化(MGE),以验证以下假设,即限制了神经进化的解决方案空间到模块化和简单的神经网络,可以有效地生成较小,更结构化的神经网络,同时提供可接受的(在某些方面)案例优于大型数据集的精度。 MGE还在两个方向上增强了最新的语法演化(GE)方法。首先,MGE的表示是模块化的,因为每个个体都有一组基因,并且每个基因都通过语法规则映射到神经元。其次,所提出的表示形式减轻了GE的两个重要缺点,即表示较低的表示性和弱位置,以生成具有大量神经元的模块化和多层网络。我们使用MGE定义和评估具有和不具有模块化的五种不同形式的结构,并找到没有耦合更有效的单层模块。我们的实验表明,模块化有助于更快地找到更好的神经网络。我们使用了十个具有不同尺寸,功能计数和输出类计数的众所周知的分类基准验证了提出的方法。我们的实验结果表明,MGE相对于现有的神经进化方法提供了卓越的准确性,并且返回分类器比其他机器学习生成的分类器要简单得多。最后,我们从经验上证明,MGE在局部性和可伸缩性属性方面优于其他GE方法。
translated by 谷歌翻译
传统的统计技术或元启发式学很难解决大多数现实世界的优化问题。主要困难与存在相当数量的局部Optima有关,这可能导致优化过程的过早收敛性。为了解决这个问题,我们提出了一种新型的启发式方法,用于构建原始功能的平滑替代模型。替代功能更容易优化,但保持原始坚固的健身景观的基本属性:全球最佳的位置。为了创建这样的替代模型,我们考虑通过自我调整健身函数增强的线性遗传编程方法。所提出的称为GP-FST-PSO替代模型的算法在搜索全局最优值和原始基准函数的视觉近似(在二维情况下)的视觉近似都可以达到令人满意的结果。
translated by 谷歌翻译
自动化机器学习(AUTOML)框架已成为数据科学家武器库中的重要工具,因为它们大大减少了专门用于ML管道构建的手动工作。此类框架在数百万个可能的ML管道中智能搜索 - 通常包含功能工程,模型选择和超级参数调整步骤 - 并最终以预测精度输出最佳管道。但是,当数据集很大时,每个单独的配置都需要更长的时间才能执行,因此总体自动运行时间越来越高。为此,我们提出基质,这是一种可以解决数据大小而不是配置空间的汽车优化策略。它包装了现有的AutoML工具,而不是直接在整个数据集上执行它们,而是使用基于遗传的算法来找到一个小而代表性的数据子集,该算法保留了完整数据的特定特征。然后,它在小子集中使用了Automl工具,最后,它通过在大型数据集中执行限制的,更短的自动进程来完善所得管道。我们的实验结果在两个流行的Automl框架上进行的Auto-Sklearn和TPOT表明,基质将其运行时间降低了79%(平均为),而所得ML管道的准确性平均损失少于2%。
translated by 谷歌翻译
近年来,随着传感器和智能设备的广泛传播,物联网(IoT)系统的数据生成速度已大大增加。在物联网系统中,必须经常处理,转换和分析大量数据,以实现各种物联网服务和功能。机器学习(ML)方法已显示出其物联网数据分析的能力。但是,将ML模型应用于物联网数据分析任务仍然面临许多困难和挑战,特别是有效的模型选择,设计/调整和更新,这给经验丰富的数据科学家带来了巨大的需求。此外,物联网数据的动态性质可能引入概念漂移问题,从而导致模型性能降解。为了减少人类的努力,自动化机器学习(AUTOML)已成为一个流行的领域,旨在自动选择,构建,调整和更新机器学习模型,以在指定任务上实现最佳性能。在本文中,我们对Automl区域中模型选择,调整和更新过程中的现有方法进行了审查,以识别和总结将ML算法应用于IoT数据分析的每个步骤的最佳解决方案。为了证明我们的发现并帮助工业用户和研究人员更好地实施汽车方法,在这项工作中提出了将汽车应用于IoT异常检测问题的案例研究。最后,我们讨论并分类了该领域的挑战和研究方向。
translated by 谷歌翻译