快速MRI旨在通过部分观察到的测量结果重建高保真图像。最近已经看到了使用深度学习的快速MRI的旺盛发展。同时,新颖的深度学习范式,例如基于变压器的模型,在自然语言处理中快速增长,并由于其出色的性能而迅速开发用于计算机视觉和医学图像分析。然而,由于变压器的复杂性,快速MRI的应用可能并不直接。主要障碍是自我发项层的计算成本(这是变压器的核心部分)对于高分辨率MRI输入而言可能是昂贵的。在这项研究中,我们提出了一种新的变压器体系结构,用于求解快速MRI,该架构将转移的Windows变压器与U-NET耦合,以降低网络的复杂性。我们将注意力集中在解释我们的重建模型的解释性上。我们从经验上证明,我们的方法在快速MRI任务上始终如一地达到卓越的性能。此外,与最先进的变压器模型相比,我们的方法在揭示解释性的同时具有更少的网络参数。该代码可在https://github.com/ayanglab/sdaut上公开获取。
translated by 谷歌翻译
磁共振成像(MRI)是一种重要的非侵入性临床工具,可以产生高分辨率和可重复的图像。然而,高质量的MR图像需要长时间的扫描时间,这导致患者的疲惫和不适,由于患者的自愿运动和非自愿的生理运动,诱导更多人工制品。为了加速扫描过程,通过K空间欠采样和基于深度学习的重建的方法已经推广。这项工作引进了SwinMR,这是一种基于新型的Swin变压器的快速MRI重建方法。整个网络由输入模块(IM)组成,特征提取模块(FEM)和输出模块(OM)。 IM和OM是2D卷积层,并且FEM由级联的残留的Swin变压器块(RSTBS)和2D卷积层组成。 RSTB由一系列SWIN变压器层(STL)组成。 STL的Shifted Windows多头自我关注(W-MSA / SW-MSA)在移位的窗口中执行,而不是整个图像空间中原始变压器的多头自我关注(MSA)。通过使用灵敏度图提出了一种新的多通道损耗,这被证明是为了保留更多纹理和细节。我们在Calgary-Campinas公共大脑MR DataSet中进行了一系列比较研究和消融研究,并在多模态脑肿瘤细分挑战2017年数据集中进行了下游分段实验。结果表明,与其他基准方法相比,我们的SwinMR实现了高质量的重建,并且它在噪音中断和不同的数据集中显示了不同的遮光罩掩模的稳健性。该代码在https://github.com/ayanglab/swinmr公开使用。
translated by 谷歌翻译
在临床医学中,磁共振成像(MRI)是诊断,分类,预后和治疗计划中最重要的工具之一。然而,MRI遭受了固有的慢数据采集过程,因为数据在k空间中顺序收集。近年来,大多数MRI重建方法在文献中侧重于整体图像重建而不是增强边缘信息。这项工作通过详细说明了对边缘信息的提高来阐述了这一趋势。具体地,我们通过结合多视图信息介绍一种用于快速多通道MRI重建的新型并行成像耦合双鉴别器生成的对抗网络(PIDD-GaN)。双判别设计旨在改善MRI重建中的边缘信息。一个鉴别器用于整体图像重建,而另一个鉴别器是负责增强边缘信息的负责。为发电机提出了一种具有本地和全局剩余学习的改进的U-Net。频率通道注意块(FCA块)嵌入在发电机中以结合注意力机制。引入内容损耗以培训发电机以获得更好的重建质量。我们对Calgary-Campinas公共大脑MR DataSet进行了全面的实验,并将我们的方法与最先进的MRI重建方法进行了比较。在MICCAI13数据集上进行了对剩余学习的消融研究,以验证所提出的模块。结果表明,我们的PIDD-GaN提供高质量的重建MR图像,具有良好的边缘信息。单图像重建的时间低于5ms,符合加快处理的需求。
translated by 谷歌翻译
现实世界图像Denoising是一个实用的图像恢复问题,旨在从野外嘈杂的输入中获取干净的图像。最近,Vision Transformer(VIT)表现出强大的捕获远程依赖性的能力,许多研究人员试图将VIT应用于图像DeNosing任务。但是,现实世界的图像是一个孤立的框架,它使VIT构建了内部贴片的远程依赖性,该依赖性将图像分为贴片并混乱噪声模式和梯度连续性。在本文中,我们建议通过使用连续的小波滑动转换器来解决此问题,该小波滑动转换器在现实世界中构建频率对应关系,称为dnswin。具体而言,我们首先使用CNN编码器从嘈杂的输入图像中提取底部功能。 DNSWIN的关键是将高频和低频信息与功能和构建频率依赖性分开。为此,我们提出了小波滑动窗口变压器,该变压器利用离散的小波变换,自我注意力和逆离散小波变换来提取深度特征。最后,我们使用CNN解码器将深度特征重建为DeNo的图像。对现实世界的基准测试的定量和定性评估都表明,拟议的DNSWIN对最新方法的表现良好。
translated by 谷歌翻译
计算机辅助医学图像分割已广泛应用于诊断和治疗,以获得靶器官和组织的形状和体积的临床有用信息。在过去的几年中,基于卷积神经网络(CNN)的方法(例如,U-Net)占主导地位,但仍遭受了不足的远程信息捕获。因此,最近的工作提出了用于医学图像分割任务的计算机视觉变压器变体,并获得了有希望的表现。这种变压器通过计算配对贴片关系来模拟远程依赖性。然而,它们促进了禁止的计算成本,尤其是在3D医学图像(例如,CT和MRI)上。在本文中,我们提出了一种称为扩张变压器的新方法,该方法在本地和全球范围内交替捕获的配对贴片关系进行自我关注。灵感来自扩张卷积核,我们以扩张的方式进行全球自我关注,扩大接收领域而不增加所涉及的斑块,从而降低计算成本。基于这种扩展变压器的设计,我们构造了一个用于3D医学图像分割的U形编码器解码器分层体系结构。 Synapse和ACDC数据集的实验表明,我们的D-Ager Model从头开始培训,以低计算成本从划痕训练,优于各种竞争力的CNN或基于变压器的分段模型,而不耗时的每训练过程。
translated by 谷歌翻译
虽然大多数当前的图像支出都进行了水平外推,但我们研究了广义图像支出问题,这些问题将视觉上下文推断出给定图像周围的全面。为此,我们开发了一个新型的基于变压器的生成对抗网络,称为U-Transformer,能够扩展具有合理结构和细节的图像边界,即使是复杂的风景图像。具体而言,我们将生成器设计为嵌入流行的Swin Transformer块的编码器到二次结构。因此,我们的新型框架可以更好地应对图像远程依赖性,这对于广义图像支出至关重要。我们另外提出了U形结构和多视图时间空间预测网络,以增强图像自我重建以及未知的零件预测。我们在实验上证明,我们提出的方法可以为针对最新图像支出方法提供广义图像支出产生可吸引人的结果。
translated by 谷歌翻译
用于深度卷积神经网络的视频插值的现有方法,因此遭受其内在限制,例如内部局限性核心权重和受限制的接收领域。为了解决这些问题,我们提出了一种基于变换器的视频插值框架,允许内容感知聚合权重,并考虑具有自我关注操作的远程依赖性。为避免全球自我关注的高计算成本,我们将当地注意的概念引入视频插值并将其扩展到空间域。此外,我们提出了一个节省时间的分离策略,以节省内存使用,这也提高了性能。此外,我们开发了一种多尺度帧合成方案,以充分实现变压器的潜力。广泛的实验证明了所提出的模型对最先进的方法来说,定量和定性地在各种基准数据集上进行定量和定性。
translated by 谷歌翻译
Image restoration is a long-standing low-level vision problem that aims to restore high-quality images from lowquality images (e.g., downscaled, noisy and compressed images). While state-of-the-art image restoration methods are based on convolutional neural networks, few attempts have been made with Transformers which show impressive performance on high-level vision tasks. In this paper, we propose a strong baseline model SwinIR for image restoration based on the Swin Transformer. SwinIR consists of three parts: shallow feature extraction, deep feature extraction and high-quality image reconstruction. In particular, the deep feature extraction module is composed of several residual Swin Transformer blocks (RSTB), each of which has several Swin Transformer layers together with a residual connection. We conduct experiments on three representative tasks: image super-resolution (including classical, lightweight and real-world image super-resolution), image denoising (including grayscale and color image denoising) and JPEG compression artifact reduction. Experimental results demonstrate that SwinIR outperforms state-of-the-art methods on different tasks by up to 0.14∼0.45dB, while the total number of parameters can be reduced by up to 67%.
translated by 谷歌翻译
在过去的十年中,卷积神经网络(Convnets)主导了医学图像分析领域。然而,发现脉搏的性能仍然可以受到它们无法模拟图像中体素之间的远程空间关系的限制。最近提出了众多视力变压器来解决哀悼缺点,在许多医学成像应用中展示最先进的表演。变压器可以是用于图像配准的强烈候选者,因为它们的自我注意机制能够更精确地理解移动和固定图像之间的空间对应。在本文中,我们呈现透射帧,一个用于体积医学图像配准的混合变压器-Cromnet模型。我们还介绍了三种变速器的变形,具有两个散晶变体,确保了拓扑保存的变形和产生良好校准的登记不确定性估计的贝叶斯变体。使用来自两个应用的体积医学图像的各种现有的登记方法和变压器架构进行广泛验证所提出的模型:患者间脑MRI注册和幻影到CT注册。定性和定量结果表明,传输和其变体导致基线方法的实质性改进,展示了用于医学图像配准的变压器的有效性。
translated by 谷歌翻译
卷积神经网络(CNNS)成功地进行了压缩图像感测。然而,由于局部性和重量共享的归纳偏差,卷积操作证明了建模远程依赖性的内在限制。变压器,最初作为序列到序列模型设计,在捕获由于基于自我关注的架构而捕获的全局背景中,即使它可以配备有限的本地化能力。本文提出了一种混合框架,一个混合框架,其集成了从CNN提供的借用的优点以及变压器提供的全局上下文,以获得增强的表示学习。所提出的方法是由自适应采样和恢复组成的端到端压缩图像感测方法。在采样模块中,通过学习的采样矩阵测量图像逐块。在重建阶段,将测量投射到双杆中。一个是用于通过卷积建模邻域关系的CNN杆,另一个是用于采用全球自我关注机制的变压器杆。双分支结构是并发,并且本地特征和全局表示在不同的分辨率下融合,以最大化功能的互补性。此外,我们探索一个渐进的战略和基于窗口的变压器块,以降低参数和计算复杂性。实验结果表明了基于专用变压器的架构进行压缩感测的有效性,与不同数据集的最先进方法相比,实现了卓越的性能。
translated by 谷歌翻译
目的:在手术规划之前,CT图像中肝血管的分割是必不可少的,并引起了医学图像分析界的广泛兴趣。由于结构复杂,对比度背景下,自动肝脏血管分割仍然特别具有挑战性。大多数相关的研究采用FCN,U-Net和V-Net变体作为骨干。然而,这些方法主要集中在捕获多尺度局部特征,这可能导致由于卷积运营商有限的地区接收领域而产生错误分类的体素。方法:我们提出了一种强大的端到端血管分割网络,通过将SWIN变压器扩展到3D并采用卷积和自我关注的有效组合,提出了一种被称为电感偏置的多头注意船网(IBIMHAV-NET)的稳健端到端血管分割网络。在实践中,我们介绍了Voxel-Wise嵌入而不是修补程序嵌入,以定位精确的肝脏血管素,并采用多尺度卷积运营商来获得局部空间信息。另一方面,我们提出了感应偏置的多头自我关注,其学习从初始化的绝对位置嵌入的归纳偏置相对位置嵌入嵌入。基于此,我们可以获得更可靠的查询和键矩阵。为了验证我们模型的泛化,我们测试具有不同结构复杂性的样本。结果:我们对3Dircadb数据集进行了实验。四种测试病例的平均骰子和敏感性为74.8%和77.5%,超过现有深度学习方法的结果和改进的图形切割方法。结论:拟议模型IBIMHAV-Net提供一种具有交错架构的自动,精确的3D肝血管分割,可更好地利用CT卷中的全局和局部空间特征。它可以进一步扩展到其他临床数据。
translated by 谷歌翻译
特征图的分辨率对于医学图像分割至关重要。大多数现有用于医疗图像分割的基于变压器的网络都是U-NET样体系结构,其中包含一个编码器,该编码器利用一系列变压器块将输入医疗图像从高分辨率表示形式转换为低分辨率特征图和解码器这逐渐从低分辨率特征图中恢复了高分辨率表示。与以前的研究不同,在本文中,我们利用高分辨率网络(HRNET)的网络设计样式,用变压器块替换卷积层,并从变压器块生成的不同分辨率特征图中连续交换信息。本文介绍的新基于变压器的网络表示为高分辨率SWIN Transformer网络(HRSTNET)。广泛的实验表明,HRSTNET可以与基于最新的变压器类似于脑肿瘤分割的U-NET样结构(BRATS)2021和Medical Sementation Decathlon的肝数据集实现可比的性能。 HRSTNET代码将在https://github.com/auroua/hrstnet上公开获得。
translated by 谷歌翻译
卷积神经网络(CNN)已成为医疗图像分割任务的共识。但是,由于卷积操作的性质,它们在建模长期依赖性和空间相关性时受到限制。尽管最初开发了变压器来解决这个问题,但它们未能捕获低级功能。相比之下,证明本地和全球特征对于密集的预测至关重要,例如在具有挑战性的环境中细分。在本文中,我们提出了一种新型方法,该方法有效地桥接了CNN和用于医学图像分割的变压器。具体而言,我们使用开创性SWIN变压器模块和一个基于CNN的编码器设计两个多尺度特征表示。为了确保从上述两个表示获得的全局和局部特征的精细融合,我们建议在编码器编码器结构的跳过连接中提出一个双层融合(DLF)模块。在各种医学图像分割数据集上进行的广泛实验证明了Hiformer在计算复杂性以及定量和定性结果方面对其他基于CNN的,基于变压器和混合方法的有效性。我们的代码可在以下网址公开获取:https://github.com/amirhossein-kz/hiformer
translated by 谷歌翻译
变压器在计算机视觉中的成功吸引了医学成像社区越来越多的关注。特别是对于医学图像细分,已经介绍了许多基于卷积神经网络(CNN)和变压器的出色混合体系结构,并取得了令人印象深刻的性能。但是,将模块化变压器嵌入CNN中的大多数方法都难以发挥其全部潜力。在本文中,我们提出了一种新型的医学图像分割的混合体系结构,称为Phtrans,该架构可与主要构建基块中的变形金刚和CNN杂交,以产生来自全球和本地特征的层次结构表示,并适应性地汇总它们,旨在完全利用其优势以获得更好的优势。细分性能。具体而言,phtrans遵循U形编码器编码器设计,并在深层阶段引入平行的Hybird模块,其中卷积块和经过修改的3D SWIN变压器分别学习本地特征和全局依赖性,然后统一尺寸,统一尺寸输出以实现特征聚合。超出颅库和自动化心脏诊断挑战数据集以外的多ATLA标签的广泛实验结果证实了其有效性,始终超过了最先进的方法。该代码可在以下网址获得:https://github.com/lseventeen/phtrans。
translated by 谷歌翻译
由于组织和骨骼之间的相似性,在人解剖结构中广泛看到了全球相关性。由于近距离质子密度和T1/T2参数,这些相关性反映在磁共振成像(MRI)扫描中。此外,为了实现加速的MRI,k空间数据的采样不足,从而导致全球混叠伪像。卷积神经网络(CNN)模型被广泛用于加速MRI重建,但是由于卷积操作的固有位置,这些模型在捕获全球相关性方面受到限制。基于自发的变压器模型能够捕获图像特征之间的全局相关性,但是,变压器模型对MRI重建的当前贡献是微小的。现有的贡献主要提供CNN转换器混合解决方案,并且很少利用MRI的物理学。在本文中,我们提出了一种基于物理的独立(无卷积)变压器模型,标题为“多头级联SWIN变压器(MCSTRA),用于加速MRI重建。 MCSTRA将几种相互关联的MRI物理相关概念与变压器网络相结合:它通过移动的窗口自我发场机制利用了全局MR特征;它使用多头设置分别提取属于不同光谱组件的MR特征;它通过级联的网络在中间脱氧和K空间校正之间进行迭代,该网络具有K空间和中间损耗计算中的数据一致性;此外,我们提出了一种新型的位置嵌入生成机制,以使用对应于底面采样掩码的点扩散函数来指导自我发作。我们的模型在视觉上和定量上都大大优于最先进的MRI重建方法,同时描述了改善的分辨率和去除词法。
translated by 谷歌翻译
变压器已成为深度学习中的主导架构之一,特别是计算机视觉中的卷积神经网络(CNNS)的强大替代品。然而,由于长期表示的自我关注的二次复杂性,以前作品中的变压器培训和推理可能是非常昂贵的,特别是对于高分辨率密集预测任务。为此,我们提出了一种更少的关注视觉变压器(点亮),建立在变形金刚的早期自我注意层仍然专注于当地模式并在最近的等级视觉变压器中带来轻微的益处。具体而言,我们提出了一种分层变压器,在那里我们使用纯多层的感知(MLP)来在早期阶段编码丰富的本地模式,同时应用自我注意模块来捕获更深层中的较长依赖性。此外,我们进一步提出了一种学习的可变形的令牌合并模块,以以非均匀方式自适应地熔化信息贴片。建议的点亮在图像识别任务中实现了有希望的性能,包括图像分类,对象检测和实例分段,作为许多愿景任务的强骨干。代码可用:https://github.com/zhuang-group/lit
translated by 谷歌翻译
由于其定量优点和高灵敏度,位置排放断层扫描(PET)被广泛用于诊所和研究中,但遭受了低信噪比(SNR)的侵害。最近,卷积神经网络(CNN)已被广泛用于提高宠物图像质量。尽管在局部特征提取方面取得了成功和有效的效率,但由于其接受场有限,CNN无法很好地捕获远距离依赖性。全球多头自我注意力(MSA)是捕获远程信息的流行方法。但是,3D图像的全局MSA计算具有较高的计算成本。在这项工作中,我们提出了一个有效的空间和渠道编码器变压器Spach Transformer,可以基于本地和全局MSA来利用空间和渠道信息。基于不同宠物示踪剂数据集的实验,即$^{18} $ f-fdg,$^{18} $ f-acbc,$^{18} $ f-dcfpyl,$ f-dcfpyl和$^{68} $ ga--进行了Dotatate,以评估提出的框架。定量结果表明,所提出的SPACH变压器可以比其他参考方法获得更好的性能。
translated by 谷歌翻译
变压器最近在各种视觉任务上表现出卓越的性能。大型有时甚至全球,接收领域赋予变换器模型,并通过其CNN对应物具有更高的表示功率。然而,简单地扩大接收领域也产生了几个问题。一方面,使用致密的注意,例如,在VIT中,导致过度的记忆和计算成本,并且特征可以受到超出兴趣区域的无关紧要的影响。另一方面,PVT或SWIN变压器采用的稀疏注意是数据不可知论,可能会限制模拟长距离关系的能力。为了缓解这些问题,我们提出了一种新型可变形的自我关注模块,其中以数据相关的方式选择密钥和值对中的密钥和值对的位置。这种灵活的方案使自我关注模块能够专注于相关区域并捕获更多的信息性功能。在此基础上,我们呈现可变形的关注变压器,一般骨干模型,具有可变形关注的图像分类和密集预测任务。广泛的实验表明,我们的模型在综合基准上实现了一致的改善结果。代码可在https://github.com/leaplabthu/dat上获得。
translated by 谷歌翻译
多年来,卷积神经网络(CNN)已成为多种计算机视觉任务的事实上的标准。尤其是,基于开创性体系结构(例如具有跳过连接的U形模型)或具有金字塔池的Artous卷积的深度神经网络已针对广泛的医学图像分析任务量身定制。此类架构的主要优点是它们容易拘留多功能本地功能。然而,作为一般共识,CNN无法捕获由于卷积操作的固有性能的内在特性而捕获长期依赖性和空间相关性。另外,从全球信息建模中获利的变压器源于自我发项机制,最近在自然语言处理和计算机视觉方面取得了出色的表现。然而,以前的研究证明,局部和全局特征对于密集预测的深层模型至关重要,例如以不同的形状和配置对复杂的结构进行分割。为此,本文提出了TransDeeplab,这是一种新型的DeepLab样纯变压器,用于医学图像分割。具体而言,我们用移动的窗口利用层次旋转式变形器来扩展DeepLabV3并建模非常有用的空间金字塔池(ASPP)模块。对相关文献的彻底搜索结果是,我们是第一个用基于纯变压器模型对开创性DeepLab模型进行建模的人。关于各种医学图像分割任务的广泛实验证明,我们的方法在视觉变压器和基于CNN的方法的合并中表现出色或与大多数当代作品相提并论,并显着降低了模型复杂性。代码和训练有素的模型可在https://github.com/rezazad68/transdeeplab上公开获得
translated by 谷歌翻译
变形金刚占据了自然语言处理领域,最近影响了计算机视觉区域。在医学图像分析领域中,变压器也已成功应用于全栈临床应用,包括图像合成/重建,注册,分割,检测和诊断。我们的论文旨在促进变压器在医学图像分析领域的认识和应用。具体而言,我们首先概述了内置在变压器和其他基本组件中的注意机制的核心概念。其次,我们回顾了针对医疗图像应用程序量身定制的各种变压器体系结构,并讨论其局限性。在这篇综述中,我们调查了围绕在不同学习范式中使用变压器,提高模型效率及其与其他技术的耦合的关键挑战。我们希望这篇评论可以为读者提供医学图像分析领域的读者的全面图片。
translated by 谷歌翻译