Thanks to rapid progress in artificial intelligence, we have entered an era when technology and philosophy intersect in interesting ways. Sitting squarely at the centre of this intersection are large language models (LLMs). The more adept LLMs become at mimicking human language, the more vulnerable we become to anthropomorphism, to seeing the systems in which they are embedded as more human-like than they really are. This trend is amplified by the natural tendency to use philosophically loaded terms, such as "knows", "believes", and "thinks", when describing these systems. To mitigate this trend, this paper advocates the practice of repeatedly stepping back to remind ourselves of how LLMs, and the systems of which they form a part, actually work. The hope is that increased scientific precision will encourage more philosophical nuance in the discourse around artificial intelligence, both within the field and in the public sphere.
translated by 谷歌翻译
The success of the large neural language models on many NLP tasks is exciting. However, we find that these successes sometimes lead to hype in which these models are being described as "understanding" language or capturing "meaning". In this position paper, we argue that a system trained only on form has a priori no way to learn meaning. In keeping with the ACL 2020 theme of "Taking Stock of Where We've Been and Where We're Going", we argue that a clear understanding of the distinction between form and meaning will help guide the field towards better science around natural language understanding.
translated by 谷歌翻译
大型语言模型(LLMS)具有变革性。它们是预先训练的基础模型,可以通过微调来适应许多不同的自然语言任务,以前每个任务都需要单独的网络模型。这是接近人类语言的非凡多功能性的一步。 GPT-3和最近的LAMDA可以与人类进行对话,并在最少的启动之后与许多例子进行许多主题。但是,关于这些LLM是否了解他们在说什么或表现出智力迹象的反应。在与LLM的三次访谈中得出截然不同的结论中,这种较高的差异显示出来。发现了一种新的可能性,可以解释这种分歧。实际上,LLM中似乎是智慧的是反映面试官智力的镜子,这是一个显着的转折,可以被视为反向图灵测试。如果是这样,那么通过研究访谈,我们可能会更多地了解面试官的智力和信念,而不是LLM的智能。
translated by 谷歌翻译
我们介绍了Sparrow,这是一个寻求信息的对话代理,与提示的语言模型基线相比,训练有素,更有帮助,正确和无害。我们使用从人类反馈中的强化学习来培训我们的模型,以帮助人类评估者判断代理人的行为。首先,为了使我们的代理人更有帮助和无害,我们将良好对话的要求分解为代理人应遵循的自然语言规则,并分别向评估者询问每个规则。我们证明,这种崩溃使我们能够收集对代理行为的更多针对性的人类判断,并允许更有效的规则条件奖励模型。其次,我们的代理商在收集对模型声明的偏好判决时提供了支持事实主张的来源的证据。对于事实问题,麻雀提供的证据支持了78%的时间。比基线比基线更享受麻雀,同时对人类的对抗性探测更具弹性,在探测时只有8%的时间违反了我们的规则。最后,我们进行了广泛的分析,表明尽管我们的模型学会遵守我们的规则,但它可以表现出分布偏见。
translated by 谷歌翻译
大规模的语言技术越来越多地用于与人类在不同情况下的各种形式的交流中。这些技术的一种特殊用例是对话剂,它会根据提示和查询输出自然语言文本。这种参与方式提出了许多社会和道德问题。例如,将对话剂与人类规范或价值观相结合意味着什么?它们应该与哪些规范或价值观保持一致?如何实现这一目标?在本文中,我们提出了许多步骤来帮助回答这些问题。我们首先要对对话代理人和人类对话者之间语言交流的基础进行哲学分析。然后,我们使用此分析来识别和制定理想的对话规范,这些规范可以控制人类与对话代理之间的成功语言交流。此外,我们探讨了如何使用这些规范来使对话剂与在一系列不同的话语领域中的人类价值相结合。最后,我们讨论了我们对与这些规范和价值观一致的对话代理设计的建议的实际含义。
translated by 谷歌翻译
Drawing from the resources of psychoanalysis and critical media studies, in this paper we develop an analysis of Large Language Models (LLMs) as automated subjects. We argue the intentional fictional projection of subjectivity onto LLMs can yield an alternate frame through which AI behaviour, including its productions of bias and harm, can be analysed. First, we introduce language models, discuss their significance and risks, and outline our case for interpreting model design and outputs with support from psychoanalytic concepts. We trace a brief history of language models, culminating with the releases, in 2022, of systems that realise state-of-the-art natural language processing performance. We engage with one such system, OpenAI's InstructGPT, as a case study, detailing the layers of its construction and conducting exploratory and semi-structured interviews with chatbots. These interviews probe the model's moral imperatives to be helpful, truthful and harmless by design. The model acts, we argue, as the condensation of often competing social desires, articulated through the internet and harvested into training data, which must then be regulated and repressed. This foundational structure can however be redirected via prompting, so that the model comes to identify with, and transfer, its commitments to the immediate human subject before it. In turn, these automated productions of language can lead to the human subject projecting agency upon the model, effecting occasionally further forms of countertransference. We conclude that critical media methods and psychoanalytic theory together offer a productive frame for grasping the powerful new capacities of AI-driven language systems.
translated by 谷歌翻译
最近围绕语言处理模型的复杂性的最新炒作使人们对机器获得了类似人类自然语言的指挥的乐观情绪。人工智能中自然语言理解的领域声称在这一领域取得了长足的进步,但是,在这方面和其他学科中使用“理解”的概念性清晰,使我们很难辨别我们实际上有多近的距离。目前的方法和剩余挑战的全面,跨学科的概述尚待进行。除了语言知识之外,这还需要考虑我们特定于物种的能力,以对,记忆,标签和传达我们(足够相似的)体现和位置经验。此外,测量实际约束需要严格分析当前模型的技术能力,以及对理论可能性和局限性的更深入的哲学反思。在本文中,我将所有这些观点(哲学,认知语言和技术)团结在一起,以揭开达到真实(人类般的)语言理解所涉及的挑战。通过解开当前方法固有的理论假设,我希望说明我们距离实现这一目标的实际程度,如果确实是目标。
translated by 谷歌翻译
There has been a recent resurgence in the area of explainable artificial intelligence as researchers and practitioners seek to make their algorithms more understandable. Much of this research is focused on explicitly explaining decisions or actions to a human observer, and it should not be controversial to say that looking at how humans explain to each other can serve as a useful starting point for explanation in artificial intelligence. However, it is fair to say that most work in explainable artificial intelligence uses only the researchers' intuition of what constitutes a 'good' explanation. There exists vast and valuable bodies of research in philosophy, psychology, and cognitive science of how people define, generate, select, evaluate, and present explanations, which argues that people employ certain cognitive biases and social expectations towards the explanation process. This paper argues that the field of explainable artificial intelligence should build on this existing research, and reviews relevant papers from philosophy, cognitive psychology/science, and social psychology, which study these topics. It draws out some important findings, and discusses ways that these can be infused with work on explainable artificial intelligence.
translated by 谷歌翻译
在本文中,我们将我们的理解,以经典的AI难题的问题应用于激进的旨在的议程。自然语言理解是AI研究的子领域,看起来很容易对先驱者来说。因此,在其原始形式的情况下,将计算机假设计算机可以使用语言,挑战是假装人类智慧。事实证明,与必要的语言技能相比,下棋和正式逻辑很容易。良好的老式的AI(戈福)的技术假设符号表示是推理和人类通信的核心,包括将代表从一个思想转移到另一个思想。但是,通过这个模型,一个人发现表示在另一个人的思想中,而不出现在中间语言。人们通过思想沟通似乎似乎。具有语音接口的系统,如Alexa和Siri当然是常见的,但它们是有限的。我们而不是添加思维阅读技巧,我们介绍了一个“作弊”,使我们的系统能够假装它。作弊很简单,对计算机科学家而言只是略有兴趣,并且对哲学家来说并不有趣。然而,阅读关于审查的主题,我们“直接感知”他人的意图,我们的作弊占据了一个新的光明,本文再次看自然语言理解在人类之间的实际工作程度。
translated by 谷歌翻译
抽象推理是智能系统的关键能力。大型语言模型在抽象推理任务上实现了高度的性能,但表现出许多缺陷。但是,人类的抽象推理也是不完美的,并且取决于我们对推理问题内容的知识和信念。例如,人类对在日常情况下基于逻辑规则的逻辑规则比关于抽象属性的任意规则更可靠地理解。语言模型的培训经验类似地赋予了他们先前的期望,这些期望反映了人类的知识和信念。因此,我们假设语言模型会显示出类似人类的内容对抽象推理问题的影响。我们在三个逻辑推理任务中探讨了这一假设:自然语言推论,判断三段论的逻辑有效性和ison选择任务(Wason,1968)。我们发现,最新的大语言模型(具有7或700亿个参数; Hoffman等,2022)反映了这些任务中人类在人类中观察到的许多相同模式 - 像人类一样,模型对可信情况的理由更有效地理由不现实或抽象的。我们的发现对理解这些认知效应以及有助于语言模型表现的因素具有影响。
translated by 谷歌翻译
内容的离散和连续表示(例如,语言或图像)具有有趣的属性,以便通过机器的理解或推理此内容来探索或推理。该职位论文提出了我们关于离散和持续陈述的作用及其在深度学习领域的作用的意见。目前的神经网络模型计算连续值数据。信息被压缩成密集,分布式嵌入式。通过Stark对比,人类在他们的语言中使用离散符号。此类符号代表了来自共享上下文信息的含义的世界的压缩版本。此外,人工推理涉及在认知水平处符号操纵,这促进了抽象的推理,知识和理解的构成,泛化和高效学习。通过这些见解的动机,在本文中,我们认为,结合离散和持续的陈述及其处理对于构建展示一般情报形式的系统至关重要。我们建议并讨论了几个途径,可以在包含离散元件来结合两种类型的陈述的优点来改进当前神经网络。
translated by 谷歌翻译
Many real-world applications of language models (LMs), such as code autocomplete and writing assistance, involve human-LM interaction, but the main LM benchmarks are non-interactive, where a system produces output without human intervention. To evaluate human-LM interaction, we develop a framework, Human-AI Language-based Interaction Evaluation (H-LINE), that expands non-interactive evaluation along three dimensions, capturing (i) the interactive process, not only the final output; (ii) the first-person subjective experience, not just a third-party assessment; and (iii) notions of preference beyond quality. We then design five tasks ranging from goal-oriented to open-ended to capture different forms of interaction. On four state-of-the-art LMs (three variants of OpenAI's GPT-3 and AI21's J1-Jumbo), we find that non-interactive performance does not always result in better human-LM interaction and that first-person and third-party metrics can diverge, suggesting the importance of examining the nuances of human-LM interaction.
translated by 谷歌翻译
我们微调GPT-3使用基于文本的Web浏览环境来回答长形问题,允许模型搜索和导航Web。通过建立任务,以便通过人类执行,我们能够使用模仿学习培训在任务上的模型,然后通过人体反馈优化答案质量。为了使人为评估事实精度更容易,模型必须在浏览支持答案时收集引用。我们在ELI5上培训并评估我们的模型,Reddit用户提出的问题数据集。我们的最佳模型是通过使用行为克隆进行微调GPT-3获得的,然后对训练训练的奖励模型进行拒绝采样来获得以预测人类偏好。这种模式的答案是人类56%的答案,我们的人类示威者的时间和69%的时间到Reddit的最高投票答复。
translated by 谷歌翻译
问答系统被认为是流行且经常有效的信息在网络上寻求信息的手段。在这样的系统中,寻求信息者可以通过自然语言提出问题来获得对他们的查询的简短回应。交互式问题回答是一种最近提出且日益流行的解决方案,它位于问答和对话系统的交集。一方面,用户可以以普通语言提出问题,并找到对她的询问的实际回答;另一方面,如果在初始请求中有多个可能的答复,很少或歧义,则系统可以将问题交通会话延长到对话中。通过允许用户提出更多问题,交互式问题回答使用户能够与系统动态互动并获得更精确的结果。这项调查提供了有关当前文献中普遍存在的交互式提问方法的详细概述。它首先要解释提问系统的基本原理,从而定义新的符号和分类法,以将所有已确定的作品结合在统一框架内。然后,根据提出的方法,评估方法和数据集/应用程序域来介绍和检查有关交互式问题解答系统的审查已发表的工作。我们还描述了围绕社区提出的特定任务和问题的趋势,从而阐明了学者的未来利益。 GitHub页面的综合综合了本文献研究中涵盖的所有主要主题,我们的工作得到了进一步的支持。 https://sisinflab.github.io/interactive-question-answering-systems-survey/
translated by 谷歌翻译
Winograd架构挑战 - 一套涉及代词参考消歧的双句话,似乎需要使用致辞知识 - 是由2011年的赫克托勒维克斯提出的。到2019年,基于大型预先训练的变压器的一些AI系统基于语言模型和微调这些问题,精度优于90%。在本文中,我们审查了Winograd架构挑战的历史并评估了其重要性。
translated by 谷歌翻译
大型语言模型,例如OpenAI的法典和DeepMind的字母,可以生成代码来解决以自然语言表达的各种问题。这项技术已经在至少一项广泛使用的编程编辑器扩展程序中进行了商业化:Github Copilot。在本文中,我们探讨了具有大型语言模型(LLM辅助编程)的编程与程序员协助的先前概念化相似,并且与众不同。我们借鉴了公开可用的经验报告,有关LLM辅助编程以及先前的可用性和设计研究。我们发现,尽管LLM辅助编程通过搜索和重用分享了一些编译,配对编程和编程的属性,但技术可能性和实践经验都存在根本差异。因此,应该将LLM辅助编程视为具有自己独特的属性和挑战的新方法。最后,我们借鉴了用户研究的观察结果,在该观察中,非专家最终用户程序员使用LLM辅助工具来求解电子表格中的数据任务。我们讨论可能出现的问题,并在将大型语言模型应用于最终用户编程时,尤其是对于几乎没有编程专业知识的用户。
translated by 谷歌翻译
Recent progress in artificial intelligence (AI) has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn, and how they learn it. Specifically, we argue that these machines should (a) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (b) ground learning in intuitive theories of physics and psychology, to support and enrich the knowledge that is learned; and (c) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes towards these goals that can combine the strengths of recent neural network advances with more structured cognitive models.
translated by 谷歌翻译
通过清晰的局限性,超越仅限语言模式并以“世界上的世界”为基础的,从语言的机器学习模型中引发看似有意义的语言行为的最新进展仅使人们更加明显。 。这样做的建议在细节上有所不同,但是团结起来的是,在添加非语言数据类型(例如图像或视频流)时,寻求解决方案,同时在很大程度上保持学习模式不变。我提出了一个不同的,更广泛的概念,即应如何理解接地:什么是基础语言是其规范性质。有一些正确做事的标准,这些标准是公开和权威的,而同时接受权威的接受也必须有争议和谈判,在只有规范地位的承载者才能正确地参与的互动中。因此,基础语言是语言用户对它的确定使用,而基于语言用户的基础是语言用户社区。我勾勒出这个想法,并为有意义的语言使用的计算建模得出一些结论。
translated by 谷歌翻译
Language models (LMs) are trained on collections of documents, written by individual human agents to achieve specific goals in an outside world. During training, LMs have access only to text of these documents, with no direct evidence of the internal states of the agents that produced them -- a fact often used to argue that LMs are incapable of modeling goal-directed aspects of human language production and comprehension. Can LMs trained on text learn anything at all about the relationship between language and use? I argue that LMs are models of intentional communication in a specific, narrow sense. When performing next word prediction given a textual context, an LM can infer and represent properties of an agent likely to have produced that context. These representations can in turn influence subsequent LM generation in the same way that agents' communicative intentions influence their language. I survey findings from the recent literature showing that -- even in today's non-robust and error-prone models -- LMs infer and use representations of fine-grained communicative intentions and more abstract beliefs and goals. Despite the limited nature of their training data, they can thus serve as building blocks for systems that communicate and act intentionally.
translated by 谷歌翻译
语言基础的挑战是通过在现实世界中的引用中充分理解自然语言。尽管可以使用AI技术,但此类技术对人类机器人团队的广泛采用和有效性依赖于用户信任。这项调查提供了有关语言基础的新兴信任领域的三项贡献,包括a)根据AI技术,数据集和用户界面的语言基础研究概述;b)与语言基础有关的六个假设信任因素,这些因素在人机清洁团队经验中进行了经验测试;c)对语言基础的信任的未来研究指示。
translated by 谷歌翻译